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Abstract. In conventional image steganalysis, cover-source mismatch
is a serious problem restricting its utility. In our work, we validate that
in deep steganalysis, cover-source mismatch still exists. But unlike in
conventional scenarios, sharp accuracy reduction just exists in a part
of cover-source mismatch scenarios in deep steganalysis. To explain this
phenomenon, we use A-distance to measure the texture complexity be-
tween databases. Furthermore, to ease the accuracy reduction caused
by the mismatch, we adapt JMMD into deep steganalysis and design a
new network (J-Net). Extensive experiments prove A-distance and J-Net
works well.
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1 Introduction

Steganography is the technique which embeds information into cover image im-
perceptibly to carry out secret and safe communication. Steganalysis is the tech-
nique to detect the existence of steganography, i.e., to judge whether the image is
embedded with secret information. When taking steganalysis into real world, the
images you want to detect and the images used to train the steganalysis model
always come from different distributions. This phenomenon is called cover-source
mismatch, which is a serious problem restricting the utility of steganalysis. In
conventional steganalysis, cover-source mismatch always causes sharp accuracy
reduction, and there are many researchers focusing on solving it [10, 13, 15]. In
recent years, with the development of deep learning,researchers started to solv-
ing steganalysis problem using deep neural networks. But in steganalysis based
on deep learning, cover-source mismatch problem has not attracted much atten-
tion [4], and there are rare works discussing that. Hence, in this paper we study
the cover-source mismatch scenario in deep steganalysis.

At first, we do analysis on cover-source mismatch scenario in deep steganaly-
sis and validate that cover-source mismatch still exists. But not like the scenario
in conventional steganalysis, sharp accuracy reduction just exists in a part of
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situations in deep steganalysis. According to that texture complexity is positive-
ly related to the steganalysis difficulty, we think it’s caused by the discrepancy
of texture complexity among databases. To explain this phenomenon, we adapt
A-distance [1] to measure the texture complexity among the databases we use.

Now that there is still cover-source mismatch problem in deep steganalysis,
we want to address it. But unlike in conventional steganalysis, deep steganalysis
models unify preprocessing, feature extraction and classifying into one frame-
work. So methods for conventional cover-source mismatch can’t be used to solve
the problem in deep steganalysis. Then inspired by researches in domain adapta-
tion which has similar scenarios as cover-source mismatch, we adapt JMMD [12]
into deep steganalysis and design a deep adaptive network (J-Net) to address
the cover-source mismatch problem. To our best knowledge, there is no research
working for solving this problem in deep steganalysis. And experiments prove
that J-Net can relieve the accuracy reduction caused by cover-source mismatch.

The contributions of this paper are concluded as follows :

1.We validate that cover-source mismatch still exists in deep steganalysis,
and use A-distance to explain it quantitatively, which is instructive for future
works.

2.To ease the accuracy reduction caused by cover-source mismatch, We adapt
JMMD into deep steganalysis and design a deep adaptive architecture (J-Net).

3.Extensive experiments prove that J-Net can ease the accuracy reduction
caused by cover-source mismatch effectively.

2 Related Works

2.1 Deep steganalysis

With the impressive performance of deep learning in other fields, scholars start-
ed to utilize deep neural networks into steganalysis. In 2015, Qian et al. [18]
first adapted CNN(convolutional neural network) to abstract the features used
for steganalysis. Based on it, according to the speciality of steganalysis, Xu et
al. [21] adjusted the details in CNN layers to promote its performance. Inspired
by the idea in conventional steganalysis, Ye-Net [22] adapted selection channel
knowledge into deep steganalysis and achieved much better performance than
conventional methods. Utilizing the residuals, Fridrich et al. [3]designed a net-
work which can be used both in spacial domain and JPEG domain. Adapting
spatial pyramid pooling, Zhu-Net [25] could take images in random sizes as input.

In conventional steganalysis, cover-source mismatch attracted much attention
[10, 13, 15]. But in deep steganalysis, there are rare works discussing it. [4] said
mismatch in deep steganalysis is not yet really well treated and understood.
And [16] proposed that there is no mismatch phenomenon when using CNNs in
steganalysis, but we have found sufficient experimental evidence to prove their
conclusion might be ill-considered to some degree.
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2.2 Deep domain adaptation

Domain adaptation focuses on the problem that how to transfer the model
trained on labeled source database to the unlabeled target database without
sharp accuracy reduction, where the source and target database have different
distributions, which is very similar to the cover-source mismatch scenario in ste-
ganalysis. To measure the distance between the source database and the target
database, Ben-David et al. [1] proposed A-distance to measure the domain dis-
crepancy. With the development of deep learning, researchers did lots of works
about the generality of deep neural networks [2,5,7,24]. Glorot et al. [7] proposed
that while deep neural networks are more general than conventional networks,
they still can’t remove the discrepancy across domain. Furthermore, [24] pro-
posed that the features in deep CNNs will transform from general to specific
along the network, i.e, the deeper are the layers, the less transferable are the
features.

Based on these theories, scholars further studied how to improve the domain
adaptation performance of deep neural networks. VRNN [17] learned tempo-
ral dependencies to create domain invariant representations; Madasu et al. [14]
designed GCN to filter out domain dependant knowledge; Deng et al. [6] pro-
posed an active transfer learning network to get competitive performance using
minimally labeled training data.

Among deep domain adaptation researches, MMD(maximum mean discrep-
ancy) is a very popular tool to restrict the discrepancy between source and target
domain. MMD is proposed by [19] to measure the distance between two statistic
distributions. In 2012, Chen et al. [20] started to adapt MMD into deep domain
adaptation. And Long et al. [11] proposed a variant of MMD called multi-kernel
maximum mean discrepancy(M-MMD). Then based on M-MMD, Long et al. [12]
proposed JMMD which takes the joint distribution of the input images and the
predicted labels into account. Inspired by researches above, we adapt JMMD
into deep steganalysis to address cover-source mismatch problem.

3 Methodology

3.1 Analysis of cover-source mismatch in deep steganalysis

Steganographies with high concealment always embed information into the high
frequency part of the image, which has less probability of being detected by
steganalysis [9]. It means that, the texture complexity of database is positively
correlated to the steganalysis difficulty [16]. Based on it, we believe that there
will be cover-source mismatch when the training set and testing set come from d-
ifferent database with different texture complexity. In experiment part, we prove
that in spatial domain, there is sharp accuracy reduction when the steganalysis
model is trained on less textured set and tested on more textured set.

To measure the texture complexity among databases, we adapt A-distance [1]
to be the measurement tool. Next we give a simple introduction of A-distance.
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A-distance is proposed to measure the discrepancy between two databases,
which is calculated using the following formula:

d̂
A

= 2(1− 2× error) (1)

where error stands for the generalization error of a binary classifier (fully con-
nected layers with 2 outputs here) trained on the binary problem to distinguish
input samples between the training and testing database. More implementation
details will be given in the experiments part.

Although A-distance is just a linear form of binary classifier, it can be used
to measure the discrepancy between 2 databases in the latent space depending
on the features used for the classifier. When the features for the classifier in A-
distance are features used for steganalysis, the latent space where the discrepancy
is measured in A-distance is steganalysis-relevant. Therefore, we think that A-
distance can measure the attributes which is relevant to steganalysis between 2
databases, including texture complexity. And the experimental results prove its
effectiveness.

3.2 J-Net for cover-source mismatch in deep steganalysis

Since there is cover-source mismatch problem in deep steganalysis, we try to ease
the accuracy reduction caused by cover-source mismatch. Note that cover-source
mismatch in steganalysis is really similar to the scenario in domain adaptation:
the model is trained on the labeled source database and tested on the unla-
beled target database which is in different distribution with the source. Hence,
inspired by the impress performance of JMMD(joint maximum mean discrepan-
cy). [12] in domain adaptation, we adapt it into deep steganalysis and design
J-Net(Fig.1).The structure of J-Net can be divided into four part: preprocessing,
feature extraction, classifier and JMMD.

Fig. 1. The structrue of J-Net. The dotted line stands for sharing parameters.
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As is known to us, the stego signal is always embedded in the high frequency
part of image. Hence, to improve the signal to noise ratio(the ratio of stego signal
to image signal), we use 30 5×5 high pass filters to preprocess the input images
just as Yedroudj-Net [23].

Then the feature extraction part consists of 5 CNN (convolutional neural
network) layers. The implementation details of the CNN layers are shown in
Table 1. Note that, because the average pooling operation acts as a low pass filter
[3] while the stego signal acts as high frequency noise, we get rid of the pooling
operation in CNN1. In addition, since in the bottom CNN layers, relatively
to image signal, stego signal is very small, ReLU(Rectified Linear Unit) is not
suitable for the weak stego signal. Hence, we use TLU(truncate linear unit) [22]
as the activation in CNN1 and CNN2. TLU function is defined as:

f(x) =

−T, x < −Tx,−T ≤ x ≤ T
T, x > T

(2)

The classifier in J-Net concludes 2 fully connected layers followed with a
softmax function which is always used for classifier:

yi =
exi∑
2
j=1e

xj
(3)

Note that, the FC layers here have no difference from the fully connected layers
in other model. What is special is that,after pre-trained procedure, the FC layers
in J-Net will be fine-tuned under the constraint of JMMD.

At last, we use JMMD(joint maximum mean discrepency) [12] to measure
and restrict the discrepancy of features in 2 fully connected layers, separately
extracted from the training and testing database which come from different
distribution. JMMD measures the distance of P and Q in reproducing kernel
Hilbert space (RKHS), which is defined as:

DL(P,Q)
∆
= ||LZs,1:|L|(P )− LZt,1:|L|(Q)||2

⊗|L|
l=1H

l
(4)

where P and Q stand for the distribution of the training and testing database re-
spectively, which are called source and target domain respectively here. LZs,1:|L|(P )
are the features in layer L extracted from P, which are in distribution P, and
H represent the reproducing kernel Hilbert space. Assuming that the source do-
main Ds has labeled ns points drawn i.i.d from P, while the target domain Dt

has nt unlabeled points drawn i.i.d from Q. The CNN will get features in layer
1 to L as {(zs1i ,..., zsLi )}ns

i=1 and {(zt1i ,..., ztLi )}nt

i=1. In empirical calculation, we use
the estimate of DL(P,Q), which is defined as :

D̂L(P,Q) =
2

n

n/2∑
i=1

(
∏
l∈L

kl(zsl2i−1, z
sl
2i−1) +

∏
l∈L

kl(ztl2i−1, z
tl
2i−1))

− 2

n

n∑
i=n/2

(
∏
l∈L

kl(zsl2i−1, z
sl
2i−1) +

∏
l∈L

kl(ztl2i−1, z
tl
2i−1))

(5)
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Table 1. Implementation details of CNNs in J-Net.

CNN1

converlution 30×(5×5×30) stride:1 pad:2
ABS
BN

TLU

CNN2

converlution 30×(5×5×30) stride:1 pad:2
BN

TLU
average pooling(5×5) stride:2

CNN3

converlution 30×(3×3×32) stride:1 pad:2
BN

ReLU
average pooling(5×5) stride:2

CNN4

converlution 32×(3×3×64) stride:2 pad:2
BN

ReLU
average pooling(5×5) stride:2

CNN5

converlution 64×(3×3×128) stride:1 pad:2
BN

ReLU
global average pooling(32×32) stride:2

The entire loss function of J-Net is composed of two parts:

min
f

2

ns

ns∑
i=1

(J(f(xsi ), y
s
i )) + λD̂L(P,Q) (6)

where J(•) is classifier loss, f(xi) represents the predicted output of the input
image, D̂L(P,Q) stands for the JMMD distance between P and Q, in layer L.
Note that, in J-Net the features in fc layers are special and less transferable, so
L=FC1,FC2 . By minimizing D̂L(P,Q), the features in FC1 and FC2 can be as
similar as possible in the reproducing kernel Hilbert space.

4 Experiment

4.1 Experimental settings

Database According to the analysis in Subsection3.1, we need textured and less
textured database together to conduct experiments. We choose BOSSBase to be
the textured database, which contains 10000 512×512 images in pgm format. As
mentioned above, cover-source mismatch in steganalysis is a serious problem in
real world, while ImageNet and MIRFlickr are good samples of the real world.
Hence, to match the image format and amount of BOSSBase, we randomly
select 10000 images from ImageNet and 10000 from MIRFlickr respectively and
transform them into pgm format. Then, to maintain the consistency of image
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Fig. 2. Database processing programme.

size, we resize the images to 512×512. The database composed of 10000 512×512
images in pgm format from ImageNet (MIRFlickr) is called mini-I (mini-M).

Next, based on Fig.2, we’ll utilize a simple inference to illustrate that images
in mini-I and mini-M are less textured than images in BOSSBase. As we all
known that, the compression from raw format to pgm format is less lossy than
the compression from raw format to jpeg format; and the format conversion from
jpeg to pgm will bring additional information loss; then the resizing process will
further hurt the texture of image. Hence, mini-I and mini-M are less textured
than BOSSBase. Note that it’s not a serious inference because the images in
BOSSBase, ImageNet and MIRFlickr are from different cameras, but we can
still think that most images in mini-I and mini-M are less textured than images
in BOSSBase(Fig.3).

Note that, most images in ImageNet and MIRFlickr are smaller than 512×512,
so due to the texture hurting, the mini-I and mini-M will be detected with high
accuracy. This scenario can not be used in normal steganalysis research, but in
our experiments, no matter how we process it, what we need is less textured
database. In real world scenario, there will be also many images which are pro-
cessed in unknown way.

Implementation details All the experiments are implemented on pytorch with
NVIDIA 1080Ti. And we adopt stochastic gradient descent (SGD) algorithm to
update the parameters of J-Net, the learning rate is initialized as 0.001, and
multiply 0.9 every 90 epochs. In addition, in all experiments shown in this pa-
per, we use S-UNIWARD [9] and WOW [8] at 0.4 bpp(bits per pixel) as the
stegaography methods.

4.2 Validation of cover-source mismatch

To validate the cover-source mismatch in deep steganalysis, we train and test J-
Net without the JMMD module on BOSSBase, mini-I and mini-M respectively,
which make up 9 scenarios totally(Table 2). Note that, without the JMMD
module, the loss function of J-Net can be rewritten as:

min
f

2

ns

ns∑
i=1

(J(f(xi), yi)) (7)
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Fig. 3. Image samples.

From Table 2, we can see that there is sharp accuracy reduction, when the
model is trained on the less textured database(mini-I or mini-M) and tested on
the more textured database BOSSBase; while there is little or even no accuracy
reduction when using the model trained on BOSSBase to detect mini-I or mini-
M. In addition, when using the model trained on mini-I (or mini-M ) to test
images from mini-M (or mini-I ), although there is a little accuracy reduction,
the accuracy on test database still reaches upper than 90%.

Unlike the scenario in conventional steganalysis, sharp accuracy reduction
just exists in a part of situations in deep steganalysis. This phenomenon may
be caused by the strong learning ability of deep neural networks: Since the
texture complexity is positively related to the steganlysis difficulty, when trained
on textured database, the deep model can learn more intrinsical features for
classifier, which can also perform well on less textured database. But how to
judge a database is textured or not? In the next part, We use A-distance [1] to
measure the texture complexity between databases.

4.3 Texture complexity measurement by A-distance

Fig.4 shows that A-distance matches the texture complexity analysis in Subsec-
tion4.1 and the experimental results above very well, which will be described in
detail next:

A-distance between 2 of the 3 databases we use is shown in Fig.4. Note that
in Fig.4, negative B→I stands for that mini-I is less textured than BOSSBase,
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Table 2. Validation of cover-source mismatch(%)

train:BOSSBase

BOSSBase mini-M mini-I
suni-0.4 81.3 79.9 87.25
wow-0.4 83.323 78.15 85.475

train:mini-M

BOSSBase mini-M mini-I
suni-0.4 54.425 97.975 94.2
wow-0.4 53.825 97.875 95.675

train:mini-I

BOSSBase mini-M mini-I
suni-0.4 61.85 93.275 97.325
wow-0.4 63.175 92.45 96.475

Fig. 4. A-distance among BOSSBase (B), mini-I (I) and mini-M (M).
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and the larger is the absolute value of B→I, the less is the texture similarity
of BOSSBase and mini-I. And in the process to get B→I, features used for the
classifier are extracted from BOSSBase and mini-I by CNN trained on BOSSBase
for steganalysis.

A-distance in Fig.4 shows that after the processing programme, mini-I and
mini-M are less textured than BOSSBase, which demonstrate the inference in
Subsection4.1. It matches the experimental results in Subsection4.2 well: there
is sharp accuracy reduction when steganalysis model is trained on less textured
mini-I(mini-M) and tested on BOSSBase, while there is just little accuracy re-
duction between mini-I and mini-M which have similar texture complexity. Note
that to our best knowledge, there is no research measuring the texture complex-
ity of databases numerically before, we believe that it’s instructive for future
works.

From experimental results above, we can concluded that not relying on the
image content, the cover-source mismatch problem in deep steganalysis is mainly
related to the texture complexity of the database, which is very different from
mismatch problem in other computer vision fields.

4.4 J-Net for cover-source mismatch in deep steganalysis

Table 3. The accuracy promotion of J-Net(%).

train:mini-I test:BOSSBase

pre-train J-Net promotion
suni-0.4 61.85 68.95 7.1
wow-0.4 63.175 71.2 8.025

train:mini-I test:BOSSBase

pre-train J-Net promotion
suni-0.4 54.425 63.875 9.45
wow-0.4 53.825 63.725 9.9

At first, it’s necessary to introduce the training process of J-Net:
1. Pre-train J-Net on training database without JMMD module, which has

been done in Subsection4.2;
2. Except full connected layers, fix parameters of J-Net;
3. Fine-tune J-Net with the labeled training images and unlabeled testing

images.
Table 3 gives the J-Net experimental results in cover-source scenarios where

sharp accuracy reduction happens. From Table3 we can see that, in these cover-
source mismatch scenarios, J-Net can promote the accuracy by 7%-10%, which
demonstrate the effectiveness of J-Net. Note that, up to now, this is the first
attempt to solve the cover-source mismatch problem in deep steganalysis.
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Note that, domain adaptation strategy can only be used in the scenario where
the images tested are a set of images. How to address the cover-source mismatch
problem when the image tested is a single image will be the future work.

4.5 Parameter analysis

Fig. 5. Analysis of λ in the loss function of J-Net.

In this section, we do analysis on the tradeoff parameter λ in the loss function
of J-Net(Figure 5). The experiment is implemented in the scenario where training
and testing set is mini-I and BOSSBase respectively, and the steganography is
wow(0.4bpp).

Fig.5 shows that, along the increasing of λ, the performance of J-Net rise first
and then fall, which demonstrates that the adaptation of JMMD makes sense.
According to Figure 5, we fixed all the λ in experiments as 0.2.

Table 4. Experiments in steganography mismatch scenario(%).

train:suni-0.4

BOSSBase mini-I mini-M
suni-0.4 81.875 97.325 97.975
wow-0.4 78.575 96.275 97.05

train:wow-0.4

BOSSBase mini-I mini-M
suni-0.4 77.433 97.775 95.375
wow-0.4 83.025 97.925 96.525

4.6 Bonus experiments

In addition to cover-source mismatch scenario, we do bonus experiments on
steganography mismatch scenario(Table 4). Table 4 shows that there is just
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little accuracy reduction when the training and testing database are embed-
ded with different steganographies. It means that whether the steganography is
WOW or S-UNIWARD, J-Net(without JMMD) can learn similar features, which
demonstrates the strong learning ability and generality of deep neural network
in steganalysis.

5 Conclusion

In this paper, we do analysis on cover-source mismatch scenarios in deep ste-
ganalysis, and find that unlike in conventional steganalysis, sharp accuracy re-
duction just exists in a part of situations in deep steganalysis. To explain this
phenomenon, we utilize A-distance to measure the texture complexity between
databases. To address the sharp accuracy reduction caused by cover-source mis-
match, we adapt JMMD into deep steganalysis and design J-Net. Experimental
results prove the effectiveness of J-Net.
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