
Deepfake Detection with Data Privacy Protection
Mingkan Wu

Dalian University of Technology
Dalian, China

390645506@mail.dlut.edu.cn

Fei Yu
Dalian University of Technology

Dalian, China
yf1999@mail.dlut.edu.cn

Fei Wang
Dalian University of Technology

Dalian, China
1727656144@mail.dlut.edu.cn

Bo Wang*
Dalian University of Technology

Dalian, China
bowang@dlut.edu.cn

Xiaohan Wu
Dalian University of Technology

Dalian, China
ssxh@mail.dlut.edu.cn

Zengren Song
National Computer Network Emergency

Response Technical Team/
Coordination Center of China

Beijing, China
songzr0518@163.com

Abstract—As image and video forgery can be easily used
for malicious purposes, the detection of such forgeries has
social and technical significance. In this work, we are par-
ticularly interested in the detection of Deepfake. For privacy
and sensitive data preserving reasons, we engage a flank at-
tack using Federated Learning, a distributed framework-based
model which keeps data locally during training while uploading
model parameters for aggregate instead. We propose a shallow
network for tampering face detection. Also, we made some
progress in promoting cross-dataset detection performance
which is crucial in Deepfake detection. Our experiments show
a well-balanced trade-off result between detection performance
and privacy preservation.

Index Terms—Deepfake Detection, Federated Learning

I. Introduction
Deepfake, including DeepFake [1], Face2Face [2],

FaceSwap [3], NeuralTexture [4], is a class of techniques
which aims to manipulate the facial area on image or video
by editing, replacing or moving.

Currently, many people use Deepfake for illegal pur-
poses. Thus, the detection of Deepfake forgery becomes
an intriguing topic.

Deepfake detection based on supervised learning, the
number, diversity and reliability of data used for training
are key to ensure the performance of the trained model.
Previous analysis always assumes that the data for train-
ing are easy to obtain and sufficient by default. But the
changeable methods of Deepfake generation can easily void
the detection because different generation methods can
produce hardly similar features. Besides, in reality, as the
sensitive and private data, the collection of face images is
difficult and under strict supervision of law.

In our work, beyond existing works in this field, we
also put privacy-preserving into our consideration. To
better explain our motivation, let’s consider the fol-
lowing scenario. Everyday, numerous individuals (users,
clients) produce request to verify the genuineness of
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locally saved image/video content. A conventional (and
intuitive) method might be, clients with requests upload
their requests and sample (data) to a server to perform
training and classification, and the server feed back to
each client with the corresponding result. However, such
method could potentially leak sensitive information and
data, which causes concerns on the data privacy and
security. For solving such issue, we propose an approach
from the Federated Learning [11] and the local parame-
ter masking mechanisms. Roughly speaking, each client
performs training locally (with local data) and submits
updated parameters (i.e., local parameters in our following
discussions) to the server, the server aggregates local
parameters and updates the global parameters, then feeds
the updated global parameters to each client for the next
round of training. More details of our model will be given
later.

This paper is organized as follows. In Section II, we
review the development of face forgery detection and the
basic framework of federated learning. In Section III, we
depict our implementation in detail. In Section IV, we
introduce experimental setup, evaluation, and comparison
with other approaches. We conclude and state future
works in Section V.

II. Related Work
1) Face Forgery Detection: At the early stage of

forgery detection research, as an intuitive approach, image
processing methods (e.g., copy-move, splicing, deleting,
etc.) are widely applied. Such detection methods mainly
focus on the extraction of inherent features from im-
ages, and train machine learning classifiers to detect
manipulations. For example, people propose features like
Speeded-Up Robust Features(SURF) [12], Photo Response
Non-Uniformity(PRNU) [13], and use machine learning
classifiers to obtain predictors (classifiers).

However, those methods could possibly destroy the in-
trinsic properties of the image, and easily fail in detecting
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forged content generated by deep learning (i.e. Gan, VAE
etc.) models trained with large-scale dataset. Accordingly,
the forgery detection develops following two deep-network-
based approaches.

One approach tries to find inconsistent and discontin-
uous artifacts. [5], [14] For example, Li et al. [5] find
that when the forged images are generated, due to the
shortage of training data in the closed eye state, the
generated image will also be short in the closed eye
state. Consequently, the artifact of non-blinking (for long
time) can be used as a feature for detection. In [6],
Yang et al. propose that after 2D marking the face
landmarks, the direction of the center region and the
edge region of the face in the real image is consistent
after 3D transformation, but the direction of the forged
image deviates greatly and the artifacts caused by the
discontinuous head posture are detectable.

The other approach focuses on the autonomous detec-
tion/classification of hidden features. Gradually optimize
the network structure to get a more optimal performance.
[8], [9], [16]

In [8], Afchar et al. propose to do meso-scopic(between
micro-scopic and macro-scopic) analysis with small num-
ber of layers network and achieve the best accuracy as
far as they know. In [19], Dong et al. uses the method
of face recognition in which each forged image and its
corresponding real image (reference image) with erased
inner face is put in during training, and make the network
find the fuzzy difference between real and forged outer
face.

III. Our Method

A. Data Preprocessing
Data pre-processing (e.g., normalization) is essential

for training a neural network. In the previous work of
federated learning, training data is usually normalized by
(local) statistics (e.g., mean and variance) independently
at each client. However, when data is heterogeneous,
such as hue, brightness or various forgery method et.al,
unusual normalized data deviation may occur, and it
may cause unexpected biased to the global gradient by
local stochastic gradients [20], [21]. Thus, we propose a
global data pre-processing method under the condition of
federated learning privacy protocol, and we name it as
federated Z-score normalization (FZSN).

To be more explicit, assuming we have a server and m
clients in our federated setting and n =

∑m
i=1 ni data in to-

tal, the number of data held by each client are {n1, ..., nm}.
First, every client uses their local data to calculate their lo-
cal statistics{mean, variance}, {{X1, S

2
1}, ..., {Xm, S2

m}}.
Then each client uploads its own statistics, which is hard
to infer from, to the central server for aggregating. The
statistics (without any data) which represent the whole
data of our federated learning framework is calculating by
the following formulas:
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Fig. 1. Pipeline of our Deepfake Detection model

mean =

∑
k nkXk∑
k nk

, (1)

S2 =

∑
k nkS

2
k +

∑
k nkdk∑

k nk
, (2)

where di = (mean−Xi)
2.

B. Network Structure
The pipeline of our network is depicted in Figure 1. We

refer to the idea of channel shuffle and group convolution
from ShuffleNet [22], and take it as the basic repeatable
cell in our network. Our model is built with shallow layers
for reasons as follows. For the feature perspective, the
artifacts express saliently in mesoscopic [8] while the high
semantic feature always fails in cross-dataset detection.
Regarding the framework perspective, clients are always
assumed to have low computing capacity and such that
shallower model is more suitable.

Regarding the proposed network, in the input phase,
we implement the large-width convolution to make all
features fully expressed and to reduce the information
loss in pooling. Then the input is mapped into a latent
space Π. In the space Π, we split the channel into two
branch Fa and Fb and note that each branch consists
of some repeatable shuffle-blocks. The shuffle-block is a
residual structure, and composed of single kernel group
convolution, channel shuffle and DWConv [23].

We use an attention mechanism to supervise the two
branches and perform intersection technique in branch
crossing. At the beginning of the second shuffle-block, we
introduce the channel attention and connect it with the
last block. For our width network, we only need limited
extra computation resource to calculate the importance
of different channels. Another is cross-branch spacial
attention, since the information of the two branches is
incomplete, the spatial information of each other is used
as supervision. After applying fusion, we can get the most
representative spatial flow and channel flow information.
We conclude the block as:

[fca(XbranchA) + fsa(XbranchB)] · g(h(xbranchA)) (3)

[fca(XbranchB) + fsa(XbranchA)] · g(h(xbranchB)) (4)
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The idea of attention mechanism is derived from [24].
For the channel attention, we compress the input in space
dimension and consider both average pooling and max
pooling. For the spatial attention, we also compress the
channel to one based on max pooling and average pooling
and merge the two attention map. The tail of our model
is followed by eight shuffle-blocks the same as described
above, at last it is a full connection layer to get the
alternative result real or fake.

Algorithm 1
Input: model G, initialized model parameters θ0, learning

rate lr, batch size bs, the number of clients n, global
epoch t, local epoch e, global loss L, local batch bnm

Output: model parameters θ∗

1: while |Lept − Lept−1 | > threshold do
2: for each client i ∈ [1, n] do
3: central sever send global model parameters θi

to client
4: θ̃ = θi
5: for each j ∈ [1, e] do
6: compute g =

∑
m ∇L(θ̃, bnm)

7: if j == e then
8: compute DP-SGD g̃ = g +N(0, σ2) [25]
9: else
10: g̃ = g
11: end if
12: compute θ̃ = θ̃ − lr ∗ g̃
13: end for
14: add random mask to model parameters θi =

Pertubation(θ̃)
15: send local parameters, local loss to central

server
16: end for
17: compute θ = 1

n

∑n
i=1 θi

18: compute L =
∑n

i=1 Li

19: end while

C. Random Mask and Differential Privacy
Addressing our concern on privacy-preserving, we im-

plement the differential privacy and random masking
mechanisms locally for each client. The pseudo-code of
our method is shown in Algorithm 1.

Differential privacy [26], [27] has been widely accepted
as a standard method and applied widely for privacy
preserving.

For every global epoch, we apply a differential-privacy-
style mechanism to the gradients, which is called DP-SGD
[25], in the last local epoch of every client. That is, we add
small noise to the updated parameter (gradients) W k

t,iter=i

and obtain a randomized version Ŵ k
t,iter=i for next iter-

ation of training. For example, Ŵ k
t,iter=i = M(W k

t,iter=i)
and if M is an additive mechanism M(W ) = W + N
and N can be taken as Gaussian or Laplace noise. We set
the maximum gradient l2 norm being 1, so the scale of

gradient keeps unchanged, and δ is equal to 1e-5 which is
close to the reciprocal of the dataset size in magnitude.
The noise scale is set as σ = 2 which is thought to be
small noise.

For data safety and communication efficiency, we also
apply random masking to the model, in the last epoch of
local iteration. Before uploading the model to the central
server, we set a part of parameters to be null with a
certain probability. When sending it to the server, the
model parameters are uploaded in a semi-completion form,
which reduces the amount of parameters and increases
the difficulty of getting data from the gradient. With
differential privacy styled randomness adding mechanism,
the connection between model parameters and training
data can be blurred such that privacy is preserved. And the
evaluation of privacy will be introduced in the subsequent
section.

IV. Experiments

A. Experimental Settings

Fig. 2. The loss curve of non-i.i.d data in federated learning settings,
drown from the loss value of client-a. Peak occurs after global
aggregation

1) Datasets: Deepfake detection can be considered as a
classification problem with two categories - real and fake.
As different forgery methods may leave different forgery
artifacts in the generated image or video contents, there
are impacts on the generalization ability or cross-dataset
ability of current Deepfake detection mechanisms. If the
training set and testing set are generated with the same
forgery method, the detection accuracy is high naturally
for most state-of-the-arts, but they may probably fail
in cross-database detection, which is one of the most
intriguing problems of Deepfake detection. Therefore, it is
wise to evaluate different methods in term of both intra-
dataset and inter-dataset performances.
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TABLE I
The performance of our method and other classical Deepfake detection method

method resolution DeepFake Face2Face FaceSwap NeuralTexture
ACC AUC ACC AUC ACC AUC ACC AUC

Steg.Feature c23 78.15 - 75.32 - 80.35 - 78.46
c40 67.20 - 58.26 - 60.34 - 59.25 -

cozzolino et.al c23 81.07 - 79.26 - 82.25 - 80.38 -
c40 70.17 - 60.90 - 62.22 - 63.64 -

MesoNet c23 93.20 - 78.05 - 87.38 - 71.44 -
c40 85.90 - 72.33 - 72.73 - 63.85 -

Fed-MesoNet c23 90.27 - 84.89 - 77.42 - 71.13 -
c40 83.65 - 71.80 - 71.42 - 60.87 -

our method c23 93.97 98.17 89.17 94.90 91.46 96.15 83.97 94.35
c40 92.28 97.74 84.13 93.09 88.12 94.44 79.96 94.15

TABLE II
generalization result based on federated learning under different data distributions in clients

training set
testing set DeepFake Face2Face FaceSwap NeuralTexture RealImage

total mixed 87.44 79.60 79.58 72.38 92.32
one for every client 87.42 77.03 72.16 63.19 89.27
two for every client 79.41 75.64 73.86 66.60 94.75

TABLE III
Acc under different datasets which share the same forgery method,

every client holds one dataset

datasets accuracy
FF++DF 95.22
Celeb-DFv2 93.37
UADFA 97.14
DFD 95.65

In this work, we import five datasets (FaceForensics++
[28], Celeb-DF [29], DFD [30], DFDC [31], UADFA [6])
to evaluate our method (as shown in Table 1). The
datasets are generated with two categories of forgery
method (face identity replacement, face attribute edit),
and four sub-categories (DeepFake , Face2Face, FaceSwap,
NeuralTexture).

B. Experimental Result
The evaluation results of our model are given in Table

1. For comparison, we also trained a federated learning
based variation of the MesoNet model. Under the same-
database setting, the performance of federated learning
models is a bit lower than (conventional) centralized
learning models. As experimental results show, we can
shrink this performance degradation under 3% in the
settings when training data and evaluating data has the
same distribution. We use FaceForensic++ dataset with
the image of C23 and C40 compression rate to evaluate.

We also evaluate on other four datasets (results are
shown in Table 3) with the Fed-MesoNet and our method.
Our method obviously outperforms Fed-MesoNet.

Table 2 and Table 3 are the generalization ability
experimental results in two different aspects.

Table 2 shows the detection accuracy when each client
holds data of different forgery methods in the FF++

dataset. Total mixed means we mixed the data of four
forgery methods to get a new dataset; one for every client
means every client holds the data of one forgery method;
two for every client means every client holds the data
of two forgery methods, for example, client-a holds DF
and FS, client-b holds DF and NT, and so on. While in
inference phase, we evaluate and get the results according
to the forgery method.

Figure 2 shows the loss curve of this experimental
setting, and the loss curve is plotted according to the
loss of each local epoch of client-a. We can learn from the
curve that if we normalize the data using our federated Z-
score normalization, we can get our method convergence
faster and the loss value is smaller. Curve fluctuates less,
represents that our method has stronger convergence and
more stable performance.

Table 3 shows the result of that: every client holds the
data which is generated by the same forgery method -
DeepFake, but comes from different datasets. They are
coarsely consistent in the forgery method, but differ in
the implementation details.

From Table 2 and Table 3, we can learn that different
forgery methods bring in more difference in artifacts de-
tected by our method. Therefore, in Table 2, the detection
accuracy of all methods has decreased by a margin, while
the result in Table 3 has hardly decreased.

V. Conclusion

In this paper, federated learning is introduced into deep
forgery detection to ensure data security in deep learning
training. Privacy mechanism prevents our data from being
accessed by malicious participants. Adopting federated
learning makes multi-party joint training possible, which
has positive practical significance.
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