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Abstract. The emergence of adversarial attacks validated the vulnerability of

neural networks. Recently, highly sparse adversarial examples gradually attracted

the attention of researchers for their ability in explaining what the neural net-

works have learned from datasets. For further understanding the sparsity adver-

sarial attacks, we propose two different white-box techniques, the BPs, and binary

fitting. BPs generates adversarial examples by validating the existence of adver-

sarial samples in a top-down way, that is, decreasing the upper border of tem-

pered pixel positions step by step. Additionally, the binary fitting method approx-

imates the L0 distance to search for the optimal adversarial example considering

the 0-norm function is non-convex. Experimental results illustrate that the pro-

posed methods exhibit superior or competitive performance to the state-of-the-art

attacks.

Keywords: Neural networks · Sparse adversarial examples · BPs · The binary

fitting method

1 Introduction

Deep neural networks (DNNs) have achieved amazing performance in extensive vision

tasks such as image classification [12,15,29] and object detection [11,18]. However,

recent researches [10,30] illustrate that well-trained models may give wrong decisions

to craft adversarial examples, whereas only tiny perturbations are added to these exam-

ples, The vulnerability of DNNs limits its applications in critical fields, such as the self-

driving system [16,36], the forensic task [8,37]. Adversarial examples, especially sam-

ples generated by the sparse adversarial attack [3,6,25], are attracting attention from

researchers, as they are helpful to understand deep learning. For instance, the modified

pixel positions in sparsity adversarial attacks show great influence on model predictions

than the rest positions.

Recent studies have introduced the adversarial attack to various tasks, e.g. object

detection [34], neural language processing [4]. According to the access degree to the

target model, attack methods are categorized into white-box attacks that allow attackers

to utilize all model information and black-box attacks that only classification results
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are available. Additionally, several norm functions are adopted to measure the distance

between benign samples and adversarial examples considering various requirements,

L0, L1, and L2. The adversarial examples constrained by L2 norm [2,5] that measures

the overall disturbance in the attack process show better human imperceptible perfor-

mance. Highly sparse adversarial examples (L0 norm [26]) are valuable for their ability

in explaining the model and imperceptible spot-like disturbances. In this work, we aim

at improving the performance of white-box sparsity adversarial attacks.

We construct two sparsity adversarial attacks. These attacks tend to modify the

smallest image pixels to successfully attack the model. The paper has the following

contributions. 1) Based on the C&W attack, we propose BPs, which decrease its possi-

bility of falling into the local minimum value. Motivated by (Project Gradient Descent)

PGD attack [22], BPs have added the batch searching, initial perturbation, and multiple

strides to L0 attack. 2) Compared with search-based attacks such as C&W attack, the

attacks based on the gradient propagation are more powerful in explaining the model.

Therefore, following several formulas in L0, we construct the approximate function of

L0. Based on this, we design several loss functions to realize the sparsity adversarial

attack. For instance, LC+P separates the size and position of the perturbation into two

vectors and then constrains each vector by the approximate function. 3) The proposed

sparsity adversarial attacks outperform or are competitive to previous attacks.

The paper is organized as the following. The BPs attack is derived in part Sect. 3.2.

In part Sect. 3.3, we first give several formulae of L0 and then describe how the binary

fitting method (BFM) realizes the sparsity adversarial attack. In the fourth part, we

compare the BPs and BFM with the state-of-the-art attacks, where also include the

ablation analysis for various constraints.

2 Related Work

2.1 Attacking Methods

Adversarial attacks are categorized into the white-box attack and the black-box attack

based on the accessibility of the attacked model. Specifically, white-box attacks make

an assumption that attackers can access all knowledge about the attacked model. For

instance, model architectures, model weights, and selected hyper-parameters. Inversely,

black-box attacks mean attackers know nothing about attacked models unless classifi-

cation results. Whether it is the white-box attack or the black-box attack, perturbations

added to the benign samples are imperceptible to humans. Gradient and iteration attack

[16] is the most commonly used attack mode. We have listed several common adversar-

ial attacks in the following subsection.

Goodfellow et al. [10] proposed the Fast Gradient Sign Method (FGSM). FGSM

only modifies pixels once for each sample according to the direction of gradient back-

ward. Therefore, FGSM is useful for untargeted attacks even though it cannot guaran-

tee a successful attack. Since the attack difficulty of FGSM towards un-targeted and

targeted attack intention, [16] proposed the Basic Iteration Methods (BIM). Based on

FGSM, BIM realizes the attack by multi-step optimization. Meanwhile, BIM restricts

the max scope of perturbations for better visualization performance. Besides, [9]

introduced momentum iteration to generate adversarial examples considering the con-

vergence speed. Sarkar et al. [28] designed the UPSET and ANGRI methods that attack
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multiple classifiers simultaneously for improving the generalization performance of

attacks. Carlini and Wagner (C&W) attack [3] obtained the crafted adversarial pertur-

bations by limiting different norm functions. Generative Adversarial Networks(GAN)

was used to generate adversarial examples [7], which learned the distribution of adver-

sarial examples generated by FGSM and establish a generation model, thus generating

corresponding adversarial examples in batches.

For special tasks like semantic segmentation and object detection, Xie et al. [34]

adopted the Dense Adversary Generation (DAG) to design adversarial examples. [31]

proposed the targeted adversarial attack for black-box audio systems. Ruiz et al. [27]

first consider defeating the deepfake generator by adding the perturbations to the benign

samples. After attacking, the facial manipulation system outputs the disrupted sample

instead of the expected manipulated image. Y. Wang et al. [33] proposed an adversar-

ial attack method for face recognition, which fool face recognition both digital domain

and physical domain. [35] proposed a character level text adversarial sample genera-

tion model. Via finding important keywords and using five interference strategies, The

model made the emotion of the sentences to change for artificial intelligence systems

without influencing people to read and understand.

2.2 Defense Methods

Considering the application scenarios, defense methods are divided into active defense

and passive defense. The former is proposed to prevent the generation of adversarial

examples while the latter is adopted to detect the generated adversarial examples. Gra-

dient mask and adversarial training are the most common methods of active defense.

Networks after crafted processings lose their gradient backward information,e.g. the

distillation network. Both [10] and [13] generated adversarial samples in the training

stage and use them as training data in the training process. Experimental results show

adversarial training increases the network robustness to various adversarial attacks.

[32] proposed an adversarial joint model, MDJM-ADV, for dialog systems to predict

domain, intent, and entity using a single LSTM cell to reduce the risk of downstream

error propagation that is present in the typical pipelined approach Since the prediction

for the bounding box is not very accurate, [21] indicated that standard detectors would

not be fooled by physical adversarial stop signs.

The passive defense includes various detection methods, such as image reconstruc-

tion, which plays the role in the testing phase. [1] proposed a deep image restoration

model that eliminates the perturbation of adversarial examples, the recovered original

examples can be classified correctly. Metzen et al. [24] assigned the detector for the

trained classification network to distinguish the adversarial examples from benign sam-

ples. Similarly, lu et al. [20] extracted the binary threshold output from each ReLU layer

as the features to train the adversarial detector. The task of image reconstruction means

to transform the adversarial examples to clean images, while should not affect the nor-

mal classification performance. However, the existing methods seem only to break the

crafted correlations between the pixel of the adversarial example, such as Magnet [23].

The researchers first determine whether the inputs are adversarial examples and then

introduce the Gaussian noise to disrupt the crafted adversarial distribution.
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3 Proposed Methods

3.1 Background

Given a trained network S, a specific distance metric ‖ · ‖0, inputs I and a radius D,

the norm ball B(S, I, ‖ · ‖0, D) is a solution for L0 attack such that B(S, I, ‖ · ‖0, D)

= {I′ = ∅| ‖ I
′ − I ‖0≤ D}. The optimal value Dop of D means that no adversarial

example is possible for perturbation of less than Dop pixels change, which is also called

the least pixel attack.

By adding tiny perturbations σ to benign samples I, the well-trained models, such

as the classification network, will be deceived. The targeted attack based on L0 norm is

expressed as,

min
σ

L0 = L{S(I + σ) = ℓ|θS } + α· ‖ σ ‖0 (1)

where S denotes the target model, such as the trained classification network, with fixed

parameters θS . L and ℓ represents the loss function and expected targets. α is the

hyper-parameter that is used to balance the attack rate and perturbation degree, which

is assigned by ablation experiments.

Following the C&W attack, we introduce the variable w that within infinite range

to calculate perturbations σ, which eliminates the problem introduced by limiting pixel

values of adversarial examples I
′ to [0,1].

σ =
1

2
(tanh(w) + 1) − I,−1 ≤ tanh(w) ≤ 1

Actually, adversarial examples are iteratively updated, which are separated into the

pixel value map and pixel position map.

I
′
i =

[

tanh
(

w + t′i−1

)

+ 1

2

]

· Pi + (1 − Pi) · I (2)

where t′i−1 = arctanh
(

I
′
i−1 · 2. − 1

)

, i and Pi denote the ith attack and the binary

vector that measures the tampered pixel positions.
∑

Pi is fixed in each iterative attack

and
∑

Pi ≥
∑

Pi+1, where
∑

Pi describes how many pixels can be modified in the

ith attack. The termination goal of the iteration for L0 attack is set to

min
σ

L0 < 0.001 or S (I′
i) = ℓ

3.2 BPs Method

BPs is a kind of search-based attack, which introduces batch processing, initial per-

turbation, and multi-strides.The search-based attack means to iteratively decrease the

value of radius D until it cannot find adversarial examples.

Given benign samples I, the initial perturbations, such as the normal distribution

perturbation nk = Noise(I, µ, δ) nk ∈ [0, 1], a batch of image points are expanded

from one image point I, R0 = {I, . . . , I} + {0, n0,1, . . . , n0,b} ∀b
j=0R0,j ∈ [0, 1]. µ

and δ are the mean and standard deviation of the noise.
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Each sample in R0 denotes one potential optimization direction. To find the image

points that contribute to affecting the model decision, we modify the termination goal

of each iteration to

∃j∈[0,b]S
(

R
′
i,j

)

= ℓ

Since a batch of image points do not share the same optimization step, image points

that initially reach the optimization criterion will be destroyed by the optimization pro-

cess of the remaining image points. Therefore, we set a static process to decrease the

Pi.
sp = [st0, st1, · · · , stm] sti ≥ stj when i ≥ j
∑

Pi ≥
∑

Pi−1 − sp[i]

Note that |sp| ≥ H ·W ·c, H ×W ×c denotes the image shape. The BPs obtains the

potential optimal adversarial examples of the sparsity adversarial attack when it meets

∃j∈(0,b)S
(

R
′
t,j

)

= ℓ,∀j∈(0,b)S
(

R
′
>t,j

)

	= ℓ

Here
∑

Pt is the maximum radius of D. We set multiple strides to validate the reliabil-

ity of D.
∑

Pi ≥
∑

Pi−1 − spk[i] k ∈ Ω

∀i∈[0,m]spk[i] < spt[i] when k < t

This setting considers the case that, the optimization process cannot find the adver-

sarial example with Pi−1, but successfully generates adversarial examples with Pi,

where
∑

Pi−1 >
∑

Pi. Finally, we express the termination goal as

∃k∈Ω∃j∈(0,b)S
(

R
′
i,j

)

= ℓ

Although we can better generate sparsity adversarial examples by setting multiple

strides, the consumption of time is impractical. Therefore, we set sp = stride (st 0 =

st 1 = · · · = st m), max(k) = 3, and stridek ∈ (2,3,5) for both the targeted attack and

untargeted attack.

3.3 Binary Fitting Method

The search-based attack spends time to validate the potential possibility of the sparsity

adversarial attack on each Pi. Next, we use the optimization strategy to determine the

location and size of perturbation. Same as the search-based attack, we separate pertur-

bations into two vectors.

Before the detailed description, we first understand the conditions of the L0 attack.

Given the adversarial example, the tampered positions are located by the difference

between the benign sample and the adversarial example.

|I′ − I| > 1. or I
′ 	= I I ∈ [0., 255.] (3)

Based on Eq. (2), ‖ σ ‖0 is expressed as

‖ I
′
i − I ‖0=‖

{[

tanh
(

w + t′i−1

)

+ 1

2

]

− I

}

· Pi ‖0
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Properties. For convenience, we denotes C =

{[

tanh(w+t′
i−1)

2

]

− I

}

and P = Pi. C

and P are the size and location of perturbations, respectively. Different from other norm

functions, 0-norm function only calculates the number of 0 (For image pixels, calculate

the number of |I′
i − I| < 1.). Therefore, ‖ σ ‖0 satisfies the following properties. The

upper border of the ‖ σ(w) ‖0

‖ σ(w) ‖0= ‖ C · P ‖0

=‖ C ‖0 + ‖ P ‖0 − ‖ C + P ‖0

≤‖ C ‖0 + ‖ P ‖0

Meanwhile, the lower border of ‖ σ(w) ‖0 is expressed as

‖ C · P ‖0≥ max{‖ C ‖0, ‖ P ‖0}

We use Pro1 and Pro2 to denote the upper border and the lower border of the

‖ σ(w) ‖0. Pro1 and Pro2 are unconditioned conclusions. In addition, when both

‖ C ‖0 and ‖ P ‖0 are greater than 0, we have

Pro3 ‖ C ‖0 · ‖ P ‖0≥‖ C · P ‖0

Any value in C and P to 0 can decrease the value of the 0-norm function.

Fitting. The variable P should be an optional binary vector since we denote it as posi-

tions of L0 attack. However, it is well-known that the 0-norm function is an NP-hard

problem, and L0 loss is discontinuous. Therefore, the optimal point cannot obtain by

the forward-backward process. Many works are proposed to solve L0 task in the search

mode, which are not determined by the internal information of the model, such as the

gradient and logit. However, larger perturbations are set in advance, e.g. directly chang-

ing the value of any selected pixel (normalized) to 0 or 1.

For such cases, we introduce the following function to replace the 0-norm function

max
w

‖ σ(w) ‖0= max
w

‖ C · P ‖0

⇒ min
w

∑

{1 −
1

exp(β · Ci,j,k · Pi,j,k)
} P ∈ RH×W×c

We denote C(Ti,j,k) as 1
exp(β·Ti,j,k) − 1 and use C(·) to replace ‖ · ‖0. β is a hyperpa-

rameter to better fit the 0-norm function. C(Pi,j,k) = 0 only when Pi,j,k → 0.

Next, we prove that ‖ T ‖0 can be replaced by C(T). For Pro2,

C(C · P) ≥ max{C(C), C(P)}

⇔ max{
1

exp (β · C2)
,

1

exp (β · P2)
} ≤

1

exp (β · C2 · P2)

⇔ P
2 ≤ 1, st. ‖ P ‖0≤‖ C ‖0 or

C
2 ≤ 1, st. ‖ C ‖0≤‖ P ‖0
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max{‖ C ‖0, ‖ P ‖0} = ‖ P ‖0, since P denotes the modified positions. For C =
tanh(w+t′)+1

2 − I, its value is limited to [-1,1]. Therefore, Pro2 is an unconditioned

expression. For Pro3,

∑

C(C · P) ≤
∑

C(C) ·
∑

C(P)

Pro3 always holds since C(C · P) ≤0 and C(C) · C(P) ≥ 0. Combine the Pro2

and Pro3, we have max{C(C), C(P)} ≤ C(C·P) ≤ 0. Thus, the function C(P·C) ≤
C(C) + C(P) is possibly holds, C(P · C) = C(C) + C(P) only when the value of β

(the default value is 10) is large enough. For Pro1,

C(C · P) ≤ C(C) + C(P)

⇔ 0 ≤ (
1

exp (β · C2)
−

1

exp (β · P2 · C2)
)+

(
1

exp (β · P2)
− 1)

Available Loss Function. To decrease the number of tampered image pixels, we con-

struct the constraint as,

min
w,P

LC·P = −
b

∑

i=1

C(Ci · Pi)

Next, several L0 attacks are realized by separating the perturbation to the pixel value

map and pixel position map.

min
w

LC = −
b

∑

i=1

C(Ci), min
P

LP = −
b

∑

i=1

C(Pi)

min
w,P

LC+P = LP + γ · LC

Normally, the value of ||P||0 is much greater than the value of ||C||0. Therefore, we

use γ (γ ≤ 1) to show the different contributions of the C and P. LC, LP, and LC+P

are both lower constraints of LC·P, that is, if case is a optimal solution of LC (or LP,

LC+P), then case is also a optimal solution of LC·P. On the contrary, L||C||0·||P||0 is

the upper border of the LC·P, which cannot guarantee the optimal value of LC·P.

min
w,P

L||C||0·||P||0 = LC · LP

The overall loss function, L0 in Eq. (1), is constructed by replacing the ‖ σ ‖0 with

the above-mentioned constraints such as LC+P.
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Fig. 1. The value denotes how many pixels have been modified. The X-axis denotes the targeted

attack goals (10 classes, 0–9). Y-axis is the sparse attack method used in this paper. The T in

CornerSearchT means the search stride. The maximum perturbable pixels in CornerSearch are set

to 100. Similar to PGD (projected gradient descent) attack, we introduce the initial perturbation

(the normal distribution perturbation) to the benign sample which is expressed as +n0. In the

same way, +B denotes the model with batch processing.

4 Experiments

4.1 Settings

In our experiments, all data comes from the public datasets CIFAR-10 [14] and MINIST

[17]. We implement the prepared model by using Tensorflow R©. Without the special

statement, we set the batch size to 128 when training the model (the default model used

in C&W attack) and to 32 in the attacking process. The initial value of the learning

rate is set to 0.01 in the training and attacking process. The code is available at https://

github.com/Dlut-lab-zmn/Least pixel attack.

4.2 Evaluation of Targeted Attack Ability

We compare the proposed sparse adversarial attacks with state-of-the-art methods:

Carlini-Wagner L0-attack [3], JSMA [25], WJSMA [19] and CornerSearch [6]. In this

section, for the targeted attack, we randomly select 500 images (50 images in each class)

from the testing set for targeted attacks. Each sample has 10 attack targets (0–9). There-

fore, for each attack, we will generate 4500 adversarial examples. To visually compare

various attack methods, we provide the confusion matrix that records the experiment
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Table 1. Comparison of various of L0 targeted attack. Each sample has 10 attack targets. For the

C&W attack, we set the search iteration to 1000. n0 denotes the normal distribution perturbation.

For CornerSearch, the upper limit of the allowed number of pixel changes is 100. Please note that

CornerSearch can not always succeed in the attack. In BFM, we assign the optimization iterations

to 2000, γ to 0.4 for MNIST, and 1. for CIFAR. The search iteration for BFM and LC+P+B is

512. ** and ** are the 1st and 2nd best results. The codes for the comparison methods are given

in the reference.

JSMA CornerSearch C&W BPs Binary Fitting Method (BFM)

Metrics JSMA WJSMA Stride = 5 L0 L0+n0 LC·P L||C||0·||P||0
LC+P LC+P+B

Dataset Type Bottom-up Top-down Bottom-up Top-down Optimize-based mode

MNIST AR 46.85 96.64 49.82 97.93 98.62 100.0 96.69 92.76 98.1 100.0

Pixel (mean) 63.84 39.6 29.52 27.82 26.7 14.88 110.6 26.68 24.77 19.38

Per (mean) 49.1 33.32 17.24 16.95 18.72 11.88 12.47 14.52 14.56 12.24

Time (s) 0.32 0.25 4.19 5.14 5.58 10.5 4.95 4.84 4.5 5.74

CIFAR AR 99.62 100 79.15 99.11 99.71 100 100 77.78 98.88 100

Pixel (mean) 68.25 42.53 43.27 27.58 32.29 5.34 642.8 127.4 25.51 14.24

Per (mean) 63.17 38.19 27.91 9.78 14.72 4.16 11.38 3.07 4.76 4.44

Time(s) 5.32 2.92 7.057 4.67 7.83 24.8 4.67 4.51 4.37 6.63

results on the MNIST dataset in Fig. 1. The value in this confusion matrix denotes the

average modified pixels that need to generate adversarial examples. We observe from

Fig. 1 that the model performs poor recognition ability for digit 8, but is robust for digits

1 and 6.

In Table 1, we report the attack rate of each method, which is the fraction of cor-

rectly classified samples that can be successfully attacked. Pixels(Mean) denotes the

number of pixels that need to modify to misclassify the network for each attack. To

better illustrate the perturbation, we adopt the Eq. (4) to calculate Pixels(mean) instead

of Eq. (5), which also measures the difference for different channel, such as when eval-

uation on the CIFAR dataset for the CornerSearch method, 43.27 for Eq. (5) and 14.44

for Eq. (4).

Pixels(Mean) =
∑

{|I′ − I| ≥ 1.} I ∈ [0., 255.] (4)

Pixels(Mean) =
∑

{max(|I′ − I|, c) ≥ 1.} I ∈ [0., 255.] (5)

The average value of the size of perturbations for all adversarial examples is denoted

as Per(Mean). Time denotes the average time consumption for generating each tar-

geted adversarial example. The sparsity adversarial attacks are categorized into three

types according to different search modes, top-down, bottom-up, and optimize-based

mode. Top-down attacks such as C&W gradually reduce the number of pixels (
∑

Pi ≤
∑

Pi−1) that can be modified. Conversely, bottom-up attacks such as JSMA tend to

modify more pixels to affect the classification decision step by step. The pixel positions

of the optimize-based method will be changed following the optimization process.

We observe from Table 1 that initial perturbations are not efficient in improving the

targeted attack rate, e.g., the results of L0 and L0 + n0. Additionally, BPs achieves

the state-of-the-art attack performance, namely, BPs only modifies half of the pixels

than the best baseline while maintaining a similar attack rate. The significant attack
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performance of BPs benefits from batch processing and multiple strides. The former

provides multiple initialization directions, and the latter increases the probability of

obtaining the optimal solution.

LC·P performs worse attack performance than other sparsity constraints. In our

opinion, that is because C(T) is only the fitting version of ‖ T ‖0, many pixels are

constrained towards 0 but are not really equal to 0. Therefore, many pixels are modi-

fied for generating adversarial examples, but the size of perturbation is still small. For

instance, not all C(T) meets Pro1 in ‖ T ‖0. The LC+P is helpful because both C and

P are limited to tiny values for invalid positions. Similar to BPs, the batch processing

for LC+P that offers multiple optimization directions has successfully improved the

attack rate.

For both targeted and untargeted attacks, the bottom-up attacks tend to spend less

time than the top-down attacks. The more vulnerable the sample, the greater the time

difference. However, we cannot observe this situation in a targeted attack since the

low attack rate of bottom-up methods. For the bottom-up attack, the running time is

controlled by the maximum search steps.

Table 2. Comparison of various of L0 untargeted attack. For C&W attack, we set the search

iteration to 1000. We assign the optimization iteration of the attack with batch processing to 512.

CornerSearch C&W BPs BFM

Dataset Metrics Stride = 5 L0 L0+n0 LC+P+B

MNIST AR 100.0 100.0 100.0 100.0 100.0

Pixel (mean) 7.54 19.75 15.21 5.80 10.51

Per (mean) 7.39 13.23 13.29 4.97 6.74

Time (s) 1.05 4.32 4.64 14.73 5.61

CIFAR AR 100.0 100.0 100.0 100.0 100.0

Pixel (mean) 5.44 15.76 19.31 8.20 9.41

Per (mean) 3.86 6.14 8.92 2.25 1.74

Time (s) 0.69 4.45 4.96 28.87 7.21

4.3 Evaluation of Untargeted Attack Ability

In this subsection, we compare the performance of the untargeted attack between our

methods (BPs attack and BFM attack) and existing attacks (CW) attack and Cor-

nerSearch method). We randomly select 1000 images from the testing set as the dataset.

All of them are correctly classified. Thus we need to generate 1000 adversarial examples

for each attack. The experiment results are given in Table 2. As we can see, the initial

perturbation improve untargeted attack performance in the MNIST dataset. However,

this conclusion is not valid in CIFAR since we use Eq. (4) and Eq. (5) to count the tam-

pered points. Apart from that, our method generates adversarial examples with fewer

pixels changed, but this improvement comes at the cost of time. For instance, in the
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CIFAR dataset, the corner search method only needs 0.69 s to generate one adversarial

example, but the BFM need 7.21 s. Therefore, BPs and BFM will be more useful for

targeted attack tasks, the high attack rate, and the necessary time consumption.

5 Conclusion

In this paper, we propose two white-box sparsity adversarial attacks, BPs and BFM.

Both attacks tend to search for the most influential pixels that affect the model deci-

sion. Extensive experiments show that our methods outperform or are competitive with

previous works. Since the attack efficiency of these two white-box sparsity adversarial

attacks is at the cost of time, we recommend that BPs and BFM be used for a targeted

attack task.
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