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ABSTRACT

Most universal JPEG steganalysis approaches rely on the as-
sumption that training and testing samples come from the
same distribution. They fail when training set and testing set
are mismatched. In this paper, we propose generalized trans-
fer component analysis for mismatched JPEG steganalysis to
derive new representations from original features for training
and testing samples to correct the mismatches. We first apply
domain alignment to transform source domain (training set) to
an intermediate domain closer to target domain (testing set).
Then a set of common transfer components are learnt across
two domains by minimizing the distribution distance between
them. In the space spanned by these transfer components, two
domains manifest similar characteristics and preserve enough
discrimination to different categories. Extensive experiments
demonstrate our method performs well in mismatched JPEG
steganalysis.

Index Terms— steganalysis, mismatch, domain align-
ment, transfer component analysis

1. INTRODUCTION

Many universal JPEG steganalysis approaches have been
proposed [1, 2, 3]. Most such approaches rely on the assump-
tion that training and testing samples come from the same
distribution. However in practical application, as a steganog-
rapher would not supply training set to the steganalyst, the
steganalysis may be mismatched [4], i.e. training samples and
testing samples come from different distributions. For exam-
ple, when training stego images and testing stego images are
embedded with different steganographic schemes, or train-
ing images and testing images are quantified with different
quantization tables or other factors, their distributions differ
much from each other and the performance of approaches
above degrade greatly. As shown in Figure 1, two universal
JPEG steganalysis methods (JPEG Rich Model (JRM)[1],
Pevny and Fridrich’s 274-dimensional feature vector (PF-
274) [2])perform well when training stego images and testing
stego images are embedded with the same steganographic
scheme, but the performance degrades when they don’t.
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(a) Two image sets embedded with different steganographic schemes:F5 [5],
OutGuess [6]. Actually, the two sets are B-F5 and B-OutGuess in Section 3.

 

 
 

(b) Detecting performance of two universal JPEG steganalysis.

Fig. 1. Effect of mismatched training and testing sets on JPEG
steganalysis.

Only a few papers have tested steganalysis in a mis-
matched scenario [4, 7, 8, 9, 10, 11, 12]. In [4], Lubenko and
Ker proposed to use the “Large Data ”approach combined
with simple classifiers for mismatched steganalysis, which
required the training data set as large and diverse as possible.
But it costs much labor to collect images for training set. If
we only have a limited number of training samples not diverse
enough, how can we train a classifier that is robust to samples
coming from a different distribution from training samples?

Recently some approaches have been proposed to fix the
problem of mismatched training and testing sets in other ar-
eas: computer vision tasks [13, 14], speech and language pro-
cessing [15, 16], text classification [17]. In these papers, the
mismatched training and testing set are named as source do-
main and target domain respectively. These approaches have
been focusing on deriving new representations from original
features for two domains. With the new representations, two
domains manifest similar characteristics and preserve enough
discrimination to differentiate categories. In object recogni-
tion across different domains, Gopalan et al proposed to sam-
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ple geodesic flow to derive a sequence of intermediate sub-
spaces from two domains to remove the domain shift[13].
In mismatched text classification, Pan et al proposed trans-
fer component analysis (TCA) to find a space in which the
marginal probability distribution difference between two do-
mains decreases [17]. Compared with these areas, the mis-
matched conditions in our problem sometimes are worse. For
example, different steganographic schemes would make their
stego image statistics change a lot. Thus there may exist no
such discriminative enough features common to two domain-
s. If applying these methods directly to our problem, we can’t
get a satisfactory result.

To address this challenge, we propose generalized trans-
fer component analysis (GTCA) for mismatched JPEG ste-
ganalysis. Before deriving the discriminate features common
to two domains, we apply the domain alignment to transfor-
m the source domain to an intermediate domain that is much
closer to the target domain. Then the representations learnt
from intermediate domain and target domain would be more
discriminate.

2. GENERALIZED TRANSFER COMPONENT
ANALYSIS

Our proposed approach, which is applied in JPEG steganal-
ysis system, includes four steps: (1) applying domain align-
ment to transform source domain to intermediate domain; (2)
learning a shared feature space spanned by common transfer
components between intermediate domain and target domain;
(3) mapping samples to the shared feature space; (4) training
a classifier on the mapped training labeled samples and us-
ing it to classify the mapped testing samples. We will explain
each step in detail in the following subsection.

Suppose we have a set of ns samples S = {s1, s2......sns}
∈ Rd in training set (source domain) and a set of nt sam-
ples T = {t1, t2......tns

} ∈ Rd in testing set (target domain),
where d is the dimension of the feature vector. The two do-
mains are mismatched. We have labels in the source domain,
yi is the label of si, where yi ∈ {−1, 1}, i = 1, 2......ns.

2.1. Domain Alignment

For ease of notation, E(sj , y), σ(sj , y) are defined to repre-
sent the expectation and the standard deviation of the jth di-
mension feature of samples with label equal to y in source
domain, where y ∈ {−1, 1}, j = 1, 2......d. Similarly, we
define E(tj , y), σ(tj , y) for target domain.

The aim of domain alignment is to learn a transformation
ϕ(·)for source domain samples to transform them to an inter-
mediate domainM . We expect that the intra-class expectation
and standard deviation of the intermediate domain equal those
of target domain:

E(ϕ(sj), y) = E(tj , y)

σ(ϕ(sj), y) = σ(tj , y)
(1)

where y ∈ {−1, 1}, j = 1, 2......d. To reach the equation(1),
we define the transformation ϕ(·) for each dimension of each
samples in source domain as:

ϕ(sji ) = (sji − E(sj , yi))
σ(tj , yi)

σ(sj , yi)
+ E(tj , yi) (2)

where j = 1, 2......d, i = 1, 2......ns.
The problem with this is that we don’t have any label

in target domain and therefore we can’t estimate E(tj , y),
σ(tj , y).

To solve the problem, we adopt the idea of an iterative
fashion similar to [18]. We transform the source domain sam-
ples using a similar transformation as formula (2):

ψ(sji ) = (sji − E(sj))
σ(tj)

σ(sj)
+ E(tj) (3)

to reach E(ψ(sj)) = E(tj), σ(ψ(sj)) = σ(tj). We train
a classifier model on the transformed source domain samples
and use it to get the joint estimate p(y|ti) on the unlabeled tar-
get domain samples. Hence an approximateE(tj , y), σ(tj , y)
can be computed:

E(tj , y) ≈ 1∑nt

i=1 p(y|ti)

nt∑
i=1

tjip(y|ti) (4)

σ(t
j , y) ≈

√√√√ 1∑nt

i=1 p(y|ti)

nt∑
i=1

(tji − E(tj , y))2p(y|ti) (5)

where j = 1, 2......d. After we get the approximate E(tj , y),
σ(tj , y), we transform source domain to intermediate domain
using the formula (2).

2.2. learning Shared Feature Space

The aim of step (2) is to find a shared space in which inter-
mediate domain and target domain manifest similar charac-
teristics i.e. similar feature distribution. We use a nonpara-
metric distance measure called Maximum Mean Discrepancy
(MMD) [19] to measure the distribution difference between
the two domains. It is given by:

MMD(M,T ) = ‖ 1

ns

ns∑
i=1

φ(s
′

i)−
1

nt

nt∑
j=1

φ(tj)‖ (6)

where s
′

i represents the transformed samples si in inter-
mediate domain, φ(·) is kernel-induced feature map to the
Reproducing Kernel Hilbert Space (RKHS), ‖ · ‖H is the
squared norm computed in RKHS. This quantity is noting but
the squared distance between sample means in RKHS and
approaches zero when the two distributions tend to be exactly
the same. Taking advantage of kernel trick, formula (6) can
rewrite as:

MMD(M,T ) = tr(KL) (7)
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where

K =

(
KMM KMT

KTM KTT

)
∈ R(ns+nt)×(ns+nt) (8)

with KMM ,KTT ,KMT ,KTM being the kernel matrices (of
element Kij = φ(xi)

Tφ(xj))of data from intermediate do-
main, target domain and across domains respectively. More-
over, Lij = 1/n2s if xi, xj ∈ M , Lij = 1/n2t else if xi, xj ∈
T , and otherwise Lij = −1/ntns.

We adopt the idea, transfer component analysis, in [17]
to find a non-liner mapping, a (ns + nt) ×m kernel feature
extraction matrix W (m < (ns + nt)), to transform both
domains to a new feature space. Thus, the samples mapped in
the space are achieved by:

Xnew = KW ∈ R(ns+nt)×m (9)

The corresponding kernel matrix is Knew = XnewX
T
new,and

the corresponding MMD between the two mapped domains
is:

MMD(M
′
, T

′
) = tr(KnewL)

= tr(KWWTKL)
(10)

The distance between the two domains can be decreased by
minimizing the formula. Besides a constraint is added to
avoid the trivial solution (W = 0), which can preserve (or
maximize) the initial data variance in the new space. The
constraint is given by:

WTKHKW = Im (11)

where H = (I(ns+nt)− (1/(ns +nt)11
T))2, I is an identity

matrix, 1 ∈ R(ns+nt)×1 with all ones. It means that the co-
variance matrix of the mapped data in the new space should
be an identity matrix.

The final kernel learning problem is then set up as:

min
W

tr(WTW) + µtr(KWWTKL)

s.t. WTKHKW = Im
(12)

where the regularization term tr(WTW) controls the com-
plexity of W and µ is a trade-off parameter. Such an opti-
mization problem can be reformulated as a trace maximiza-
tion problem. The solution of W is eigenvectors correspond-
ing to the m leading eigenvectors of (I + µKLK)−1KHK.
More detailed development can be found in [17]. In our ex-
periment, we set the dimensionality of subspaces m to 20 and
µ to 0.1 empirically.

Once W is available, we can map the samples of interme-
diate and target domain to the new space by formula (9). In
the new space, we can train a classifier on the mapped source
labeled samples and use it to classify the target samples in
the same space. The classifier we use is the support vector
machine (lib-SVM [20]).

 

 

 

Fig. 2. Quantization tables of images. The left is luminance
quantization table of images from Set A, and the right is that
of images from Set B.

3. EXPERIMENT

To evaluate the performance of our method, we choose three
common and seriously mismatched conditions in JPEG ste-
ganalysis as our experiment scenarios : (1) different quan-
tization tables for cover images; (2) different steganograph-
ic schemes;(3) different quantization tables for cover images
and different steganographic schemes.

3.1. Setup

For our experiments, we use two sets of JPEG color im-
ages(e.g., Set A and Set B)of size of 1600 × 1200, obtained
from a camera(Canon Power Shot pro1). Each set includes
1800 JPEG images. These images contain a wide range of
indoor/outdoor, daylight/night scenes, providing a real and
challenging environment for a steganalysis problem. The two
sets can be distinguished from each other, for they are quan-
tified with different quantization tables as shown in Figure
2.

We classify each set into four groups and use four com-
mon JPEG steganographic schemes (F5 [5], OutGuess [6],
MBS [21], Jsteg [22]) to embed the message into each
group respectively. The message length is set to 10% of
the maximum capacity. Thus we get eight domains: A-F5,
A-OutGuess, A-MBS, A-Jsteg, B-F5, B-OutGuess, B-MBS, B-
Jsteg. Each domain includes cover images and stego images.

In our experiment, we use the PF-274 features[2] as the
original feature 1for GTCA. We compare our method (GT-
CA) with the following methods:(1) Orig-Fea. We use the
original features, PF-274, without any transformation and use
lib-SVM as classifier. (2) OEAP. In this case, we use JRM
features as image feature and use Online Ensemble Average
Perceptron proposed in [4] as classifier. (3)TCA. In this case,
we use the new representations learnt from original features,
PF-274, with the method proposed in [17] as image features
and lib-SVM as classifier.

For each pair of source and target domains, we conduct
experiments in 5 random trials. In each trial, we randomly

1The reason that we choose PF-274 features instead of JRM features [1]
is that the dimension of JRM features (22,510) is so high that it is time con-
suming to apply GTCA to them.
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sample 300 labeled data per category in the source domain as
training examples, and 300 unlabeled data per category in the
target domain as testing examples. We report the averaged
classification accuracies.

3.2. Result

To evaluate the effectiveness of our method, we conduct ex-
periments on training and testing sets under three different
mismatched conditions using the eight domains we build(A-
F: A-F5, A-O: A-OutGuess, A-B: A-MBS, A-J: A-Jsteg, B-F:
B-F5, B-O: B-OutGuess, B-M: B-MBS, B-J: B-Jsteg). As s-
pace is limited, we only give the partial results.
Mismatched Experiment 1 – Different Quantization Ta-
bles:

Assume that cover images quantified with different quan-
tization tables are embedded with the same steganographic
schemes in training and testing sets. The results are shown in
Table 1.

Table 1. Results of Mismatched Experiment 1
Train→Test A-F→B-F A-J→B-J A-M→B-M A-O→B-O

Orig-Fea 0.505 0.515 0.515 0.505
OEAP [4] 0.500 0.515 0.523 0.515
TCA [17] 0.500 0.505 0.549 0.827

GTCA 0.884 0.965 0.931 0.944
Train→Test B-F→A-F B-J→A-J B-M→A-M B-O→A-O

Orig-Fea 0.505 0.545 0.535 0.515
OEAP [4] 0.525 0.505 0.505 0.545
TCA [17] 0.525 0.825 0.899 0.515

GTCA 0.787 0.975 0.951 0.865

Mismatched Experiment 2 – Different Steganographic
Schemes:

Assume that cover images quantified with the same quan-
tization tables are embedded with different steganographic
schemes in training and testing sets. The results are shown in
Table 2.

Table 2. Results of Mismatched Experiment 2
Train→Test B-F→B-M B-F→B-O B-J→B-M B-J→B-O

Orig-Fea 0.695 0.705 0.533 0.515
OEAP [4] 0.833 0.755 0.553 0.535
TCA [17] 0.865 0.785 0.655 0.602

GTCA 0.885 0.875 0.835 0.845
Train→Test B-J→B-F B-M→B-F B-M→B-O B-O→B-F

Orig-Fea 0.515 0.635 0.870 0.541
OEAP [4] 0.572 0.653 0.905 0.835
TCA [17] 0.755 0.845 0.855 0.775

GTCA 0.745 0.885 0.983 0.877

Mismatched Experiment 3 – Different Steganographic
Schemes and Quantization Tables:

Assume that cover images quantified with different quan-
tization tables are embedded with different steganographic

schemes in training and testing sets. The results are shown
in Table 3.

Table 3. Results of Mismatched Experiment 3

Train→Test A-F→B-M A-F→B-O A-J→B-M A-J→B-O
Orig-Fea 0.495 0.510 0.500 0.500
OEAP [4] 0.535 0.545 0.523 0.515
TCA [17] 0.505 0.500 0.500 0.502

GTCA 0.805 0.837 0.785 0.753
Train→Test A-J→B-F A-M→B-F A-M→B-O A-O→B-F

Orig-Fea 0.500 0.510 0.535 0.512
OEAP [4] 0.523 0.515 0.550 0.515
TCA [17] 0.504 0.530 0.559 0.575

GTCA 0.733 0.735 0.922 0.807

From the experimental results above, we can find out that
our method performs the best in three mismatched JPEG ste-
ganalysis. In each case, GTCA performs better than method
proposed in [4], which confirms the superiority of our method
when the training set is small and not diverse enough. In most
cases, GTCA outperforms TCA[17], which verifies that ap-
plying domain alignment can contribute to TCA deriving
more discriminate features between two domains. Only in
Mismatched Experiment 2, the performance of GTCA is
worse than TCA for B-J to B-F. We think the reason is that
formulae (4),(5) in Domain Alignment are approximate. In
most cases, the two approximate formulae are reasonable.
Only when the difference between two domains were huge
and the precision of the joint estimate were poor, the error
of the approximate formulae would increase. In Mismatched
Experiment 3, the results are not as good as those of the for-
mer ones. The reason is that the mismatched conditions for
experiment 3 are much worse.

4. CONCLUSION

In this paper, we propose generalized transfer component
analysis for mismatched JPEG steganalysis. We first ap-
ply the domain alignment to transform source domain to an
intermediate domain that is much closer to target domain.
Then we derive the shared feature space spanned by common
transfer components between intermediate domain and target
domain in RKHS. Compared with previous approaches, the
representations we derive are more discriminate. We demon-
strate the effectiveness of our approach under three different
mismatched conditions for training and testing sets. The re-
sults show that our method can decrease the mismatches in
JPEG steganalysis very well.
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