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ABSTRACT

Sensor pattern noise (SPN) has been proved to be an in-
herent fingerprint of a camera, and it has been broadly used
in the fields of image authentication and camera source iden-
tification. However, the SPN extracted using current denois-
ing algorithm always contains image content residual, which
would significatively influence the accuracy of camera source
identification. In this paper, a novel patch-based (PB) sen-
sor pattern noise algorithm for camera source identification is
proposed to solve this problem. Low-complexity patches of
images are selected to construct local reference SPN, which
contains least image content residual. The global reference
SPN is constituted with the block-wised local SPN. Similarly
for the test image, SPN is extracted from low-complexity re-
gion, and making correlation with corresponding local refer-
ence SPN. Our experiments on the Dresden database demon-
strate that the proposed approach outperforms two sensor pat-
tern noise estimation methods on the literatures as baseline.

Index Terms— Sensor pattern noise, source camera i-
dentification, image complexity, patch-based sensor pattern
noise.

1. INTRODUCTION

In last decade, digital image acquisition devices have become
popular because of the much lower cost. As a result, the
digital images are used to record events, testify incidents,
and provide legally evidence for courtroom purposes. At the
same time, there are more and more digital image processing
techniques and photo editing software, which greatly reduce
the integrity of digital images. As an important branch of
passive digital image forensics, source camera identification
focuses on the authentication of the originality of digital im-
ages. In recent years, various techniques have been proposed
to solve the problem of source camera identification. These
approaches can be categorized into two classes: Model-based
and camera-based source identifications. A typical solu-
tion of model-based camera source identification is based on
multi-dimensional statistical characteristic for classification.
For example, Swaminathan et al. [1] proposed a method for
source camera identification by the estimation of CFA pattern
and interpolation kernel, which can gain an overall average

accuracy of 90% for 19 camera brands. Kharrazi et al. [2]
proposed 34 features which can be categorized into three
types: Color features, image quality measurement (IQM),
and high order wavelet characteristics (HOWS). A classifier
based on these features can achieve an average accuracy of
88.02%. Recently, Xu and Shi used the uniform gray-scale
invariant local binary patterns (LBP) [3] and received an av-
erage classification accuracy of 98.0%. The camera-based
source identification focus on tracing a unique intrinsic fin-
gerprint of a specific device. This work is mainly based on
the sensor pattern noise. Lukas et al. first utilized the photo
response non-uniformity noise of imaging sensors as a device
fingerprint for camera-based source identification [4]. In [5],
Hu et al. proposed an algorithm only comparing the large
components of reference and test SPN. In [6], they proposed
three schemes for combining information coming for three
color channels that are an evolution of the large components
technique presented in [5]. Later on, a series of improved
algorithms were proposed in [7]-[9]. Most of these methods
focus on estimating more accurate SPN and choosing a better
correlation criterion.

In this paper, we propose a patch-based SPN method to
identify the camera source. First of all, the image complexity
is considered as an important factor that influences the accura-
cy of camera source identification. Then, a patch-based SPN
method is proposed to generate a block-wised reference SPN.
On the test phase, we select the test patch based on the image
complexity, and calculate the correlation coefficient between
the test patch with the corresponding block in reference SP-
N. Comparisons between the proposed method and two base-
lines from literatures verify the performance improvements
of the proposed method. The rest of the paper is organized
as follows. In Section 2, we introduce image complexity
and present the proposed patch-based SPN method for cam-
era source identification. In Section 3, experimental results
demonstrate the efficiency of the proposed method. Finally,
conclusions are drawn in Section 4.

2. PROPOSED METHOD

The image content residual is an inherent signal in SPN ex-
traction, no matter what denoising algorithm adopted in the
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Fig. 1. (a) An image taken by camera Kodak-M1063. (b) The
SPN extracted from (a) by the method proposed in [4].

algorithm, as shown in Fig. 1. However, the residual intensity
differs the accuracy of source camera identification. Previous
works [10] have been proved that a cleaner SPN with less im-
age content residual achieves a higher identification accuracy.
Motivated by this factor, a novel patch-based SPN extraction
method is proposed in this section, by quantitatively analyz-
ing the image texture complexity.

2.1. Image complexity

Since image can be modeled as a region smooth Markov Dis-
tribution. Correlation can be found in neighborhood pixel-
s. The difference between neighborhood pixels can approxi-
mately reflect the texture complexity of image. Considering
an image I , Ii,j represents the value of pixel (i, j), and Ii,j+1,
Ii+1,j represent the values of horizontal and vertical neigh-
borhood pixels of Ii,j , respectively. Then, the horizontal and
vertical differences can be defined as:

x = In − In+1 (1)

According to [10], the differences between neighborhood
pixels can be modeled as a random Generalized Gaussian dis-
tribution (GGD) [11] variable with zero mean. The definition
of GGD is given by:

pα,β(x) =
β

2αΓ(1/β)
exp(−(

|x|
α

)2), (2)

α = σ

√
Γ(1/β)

Γ(3/β)
, σ > 0, (3)

where the Γ is the gamma function:

Γ(z) =

∫ ∞
0

e−ttz−1dt, z > 0. (4)

Three parameters σ2, α, and β in equation (2) represent vari-
ance, scale parameter, and shape parameter, respectively.
These parameters can be rapidly estimated by the method in
[12]. When the value of β drops, the shape of GGD probabil-
ity density function become sharper. A smooth image means
most of the difference values between neighborhood pixels
will be around zero, namely a sharp GGD probability density
function with a smaller value of β. On the contrary, a texture

Fig. 2. (a) An image taken by camera Kodak-M1063. (b) The
image complexity of each patch.

Fig. 3. The block diagram of patch-based SPN generation.

image implies a larger β. Therefore, there is a strong cor-
relation between the shape parameter and the image texture
complexity. In this paper, we define the complexity βhv as
the arithmetic average of the horizontal complexity βh and
the vertical complexity βv , β = (βh + βv)/2. Fig. 2 (a) is
the original image, and Fig. 2 (b) shows the βhv values of
each patch. The patches with the amount of texture will get
a larger value of βhv , while the smooth patches, such as that
of sky only will obtain a smaller value of βhv , as described
before.

2.2. Patch-based SPN

Lukas et al. [4] proposed to use the average residual signals
to construct the reference SPN. Residual signal ri is obtained
by ri = Ii − F (Ii), where Ii is an original image and F (Ii)
is the denoised image by a wavelet-based de-noising filter.
Then, the reference SPN is given by:

K =

∑N
i=1 ri
N

(5)

whereN is the number of images used to extract the SPN. We
call this algorithm as Basic SPN in this paper.

Then, Goljian et al. [13] proposed a new SPN estimation
technique, named the Maximum Likelihood Estimator (MLE)
for camera source identification. The method of reference SP-
N generation is given by:

K =

∑N
i=1 riIi∑N
i=1(Ii)2

. (6)
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Table 2. Accuracy of Basic SPN and proposed PBB SPN

Image Method Casio-EX FujiFilm Kodak Nikon Olympus Panasonic Pentax
size Z150 FinePixJ50 M1063 D200 mju DMC OptioA40

256× 256
Basic SPN 93% 88% 48% 86% 90% 94% 90%

PBB SPN 92% 99% 85% 99% 88% 95% 90%

512× 512
Basic SPN 98% 85% 91% 95% 93% 94% 95%

PBB SPN 99% 100% 93% 99% 90% 98% 97%

Table 3. Accuracy of MLE SPN and proposed PBM SPN

Image Method Casio-EX FujiFilm Kodak Nikon Olympus Panasonic Pentax
size Z150 FinePixJ50 M1063 D200 mju DMC OptioA40

256× 256
MLE SPN 97% 97% 72% 93% 90% 98% 92%

PBM SPN 89% 99% 77% 98% 90% 96% 87%

512× 512
MLE SPN 99% 90% 95% 98% 93% 96% 98%

PBM SPN 99% 99% 93% 99% 92% 100% 97%

In this paper, the image complexity is introduced to the
processing of reference SPN generation. Assuming there are
n images Ii(i = 1, 2, . . . , n) taken by camera c. First of al-
l, each image is divided into several patches with a size of
128 × 128. Then, the complexity parameter β of each patch
is calculated. According to the value of β, the patches in the
same location are sorted in an ascend order. For the purpose
of using the smooth image regions to generate the reference
SPN, 50% of the patches with the minimum values of β are
selected to construct local reference SPN. For a fair compar-
ison, the basic SPN and MLE method mentioned above are
respectively used as the method to extract the reference SPN
from the selected smooth images. In the rest of paper, we call
these two methods as PBB SPN and PBM SPN, respectively.
Then, these local reference SPN patches are combined to ob-
tain a large reference SPN. The block diagram of patch-based
SPN generation is shown in Fig. 3. For the test image, we al-
so divide the image into patches, and calculate the complexity
parameter β of each patch. The patch with the smallest value
is selected to extract residual noise. In the end, we calculate
the correlation between the SPN of the selected patch and the
reference SPN of corresponding region.

3. EXPERIMNETS

3.1. Experimental setting

In our experiments, a total of 1050 images from 7 cameras,
which come from the Dresden Image Dataset [14], are con-
sidered. Table 1 demonstrates the details of the seven digital
cameras which have been used in our experiments. For all
experiments, the reference SPN is extracted from 50 images,

Table 1. Details of the dataset used in experiments
Camera model Resolution Number

Casio-EX-Z150 3264× 2448 150
FujiFilm-FinePixJ50 3264× 2448 150

Kodak-M1063 3664× 2748 150
Nikon-D200 3872× 2592 150

Olympus-mju 3648× 2736 150
Panasonic-DMC 3264× 2736 150
Pentax-OptioA40 4000× 3000 150

and the test images is a set of 700 images, 100 images for each
camera. For the comparison purpose, Basic SPN method [4]
and MLE method [13] are employed as the baseline. In [4],
the NCC is used to calculate the correlation. Different with
that in [4], the Perk to Correlation Energy ratio (PCE) is used
to evaluate the correlation in [13]. In order to conduct a fair
comparison, we utilize the same correlation criterions of the
PCE, which is given by:

PCE(u) =
ncc(Sperk, u)2

1
mn−|N |

∑
s/∈N ncc(s, u)2

=
rxy

2(0)
1

mn−|N |
∑
u/∈N rxy2(u)

(7)

where m and n refer to the size of the image, and for each
fixed u, N is a small region surrounding the peak value of
NCC, Sperk, across all shifts s1, s2. The reference SPN is ex-
tracted by the PB method proposed in section 2.2. In this pa-
per, we only consider the region on the upper left region, and
the size is 128×12, 128×24. At the same time, for a test im-
age, we attempt to find one image patch, which contains least
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Fig. 4. Roc curves of Basic and PBB SPN for image size 256×256.

Fig. 5. Roc curves of Basic and PBB SPN for image size 512×512.

image texture in the same region as described above, and cal-
culate the correlation with corresponding region in reference
SPN. As for the size of patch to construct reference SPN is
128× 128, in this paper, only two sizes of test image patches
(256 × 256, 512 × 512) have been considered to verify the
performance of the proposed method.

3.2. Performance evaluation

Table 2 and Table 3 demonstrates the identification accuracies
of the proposed methods PBB and PBM for each camera. We
receive a better performance compared with the baseline pro-
posed in [4] and [13]. From Table 2, we can see a significant
improvement with an image size of 256 × 256 with an aver-
age increase up to 8% in accuracy. For the size of 512× 512,
the improvements reach 4%. Similar results can be found in
Table 3. ROC curves have been also used in this paper to as-
sess the performance of camera source identification as well
as the accuracy. We plot the ROC curves for these four-groups
comparisons, as shown in Fig. 4-7. More significant perfor-
mance improvements of the proposed methods could be found

Fig. 6. Roc curves of MLE and PBM SPN for image size 256×256.

Fig. 7. Roc curves of MLE and PBM SPN for image size 512×512.

in these experimental results.

4. CONCLUSION

A patch-based (PB) sensor pattern noise method was pro-
posed for camera source identification in this paper. Based
on the observation that the SPN extracted from the smooth
image regions has less image content residual, the parameters
of image complexity were estimated for selecting the patches
to construct the reference SPN and extract the test SPN. Ex-
perimental results demonstrated that the proposed approaches
outperform two previously proposed sensor pattern noise es-
timation methods.
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