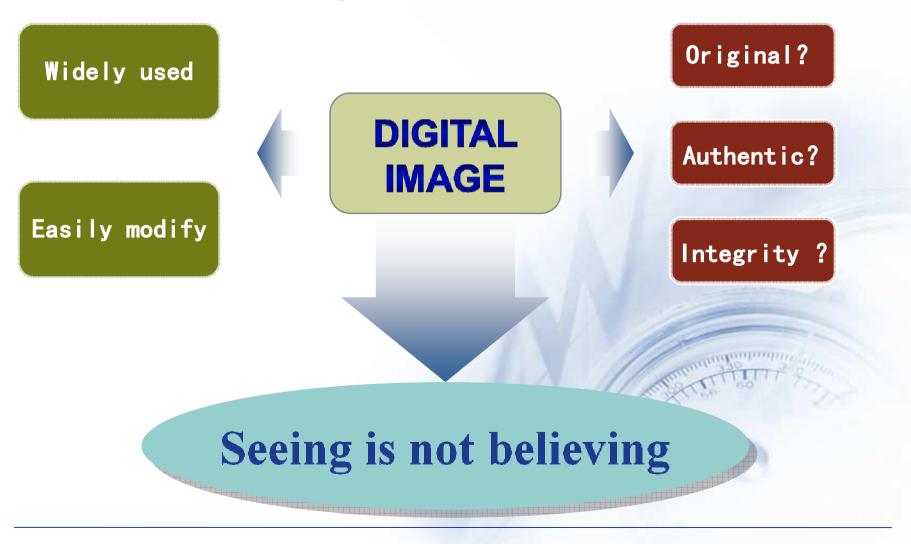
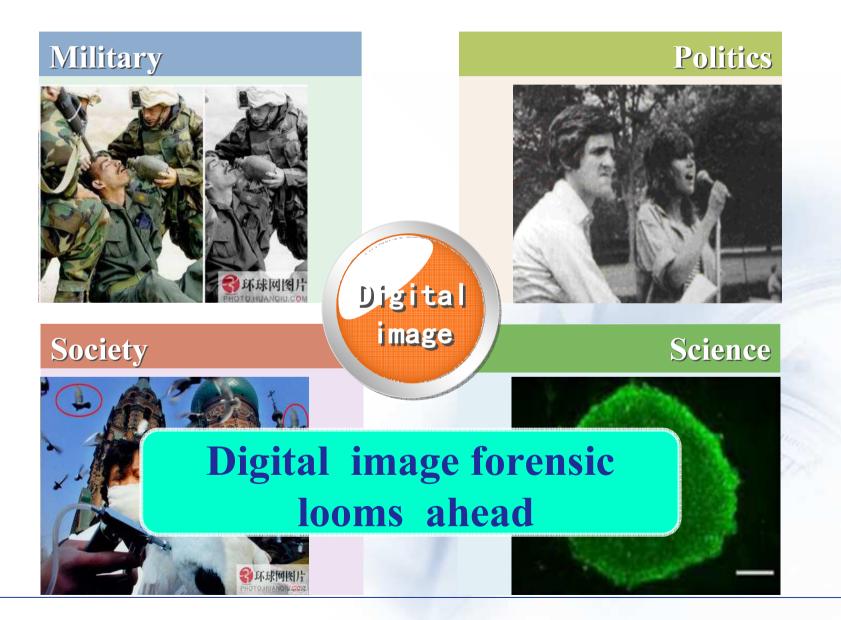


Silhouette Coefficient Based Approach on Cell-Phone Classification for Unknown Source Images

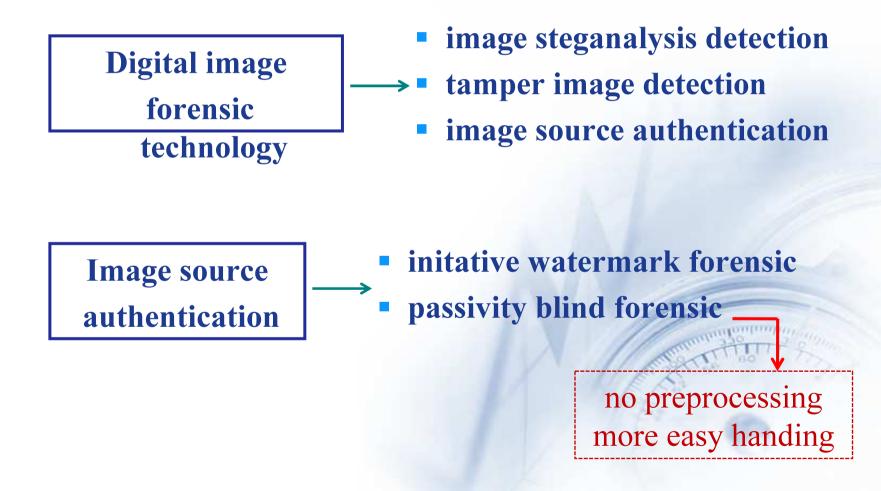
Shuhan Luan¹, Xiangwei Kong¹, Bo Wang¹, Yanqing Guo¹, Xingang You²


¹School of Information and Communication Engineering Dalian University of Technology, Dalian, 116024, China

²Beijing Institute of Electronic Technology and Application Beijing, 100091, China

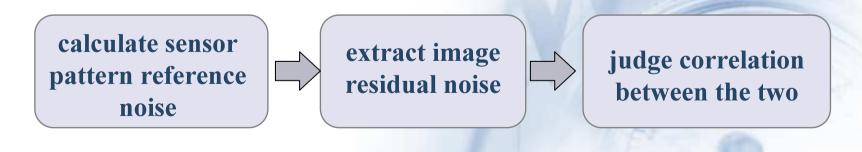


1. Research Background



·. INTRODUCTION

2. Overview


-. INTRODUCTION

- 3. Blind image source forensic:
- a) Based on multi-dimensional statistical features

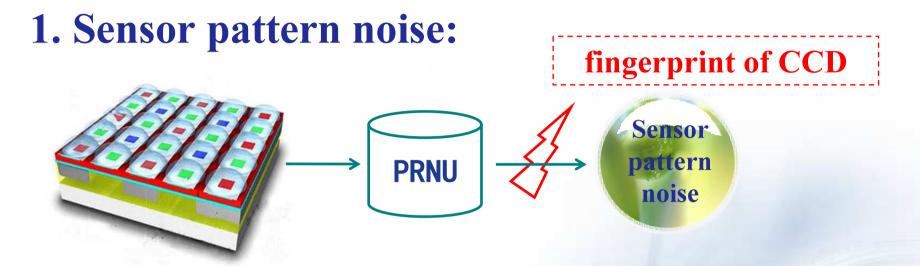
b) Based on sensor pattern noise

-. INTRODUCTION

- 4. Similarities :
- a) used for training the classifier
- b) used for computing the reference pattern noise

Need a set of images with known source cell-phones as a prior knowledge

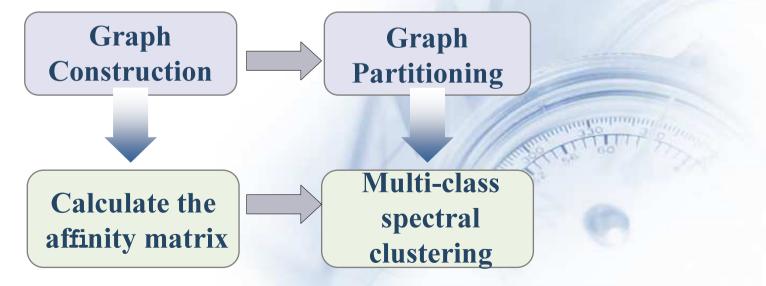
Can we hit the mark without a prior knowledge



Aiming at solving the problem above:

I.A GRAPH BASED APPROACH

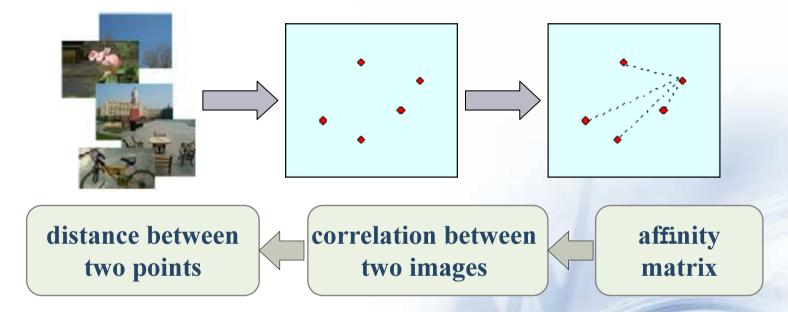
> attain the noise residual of image:



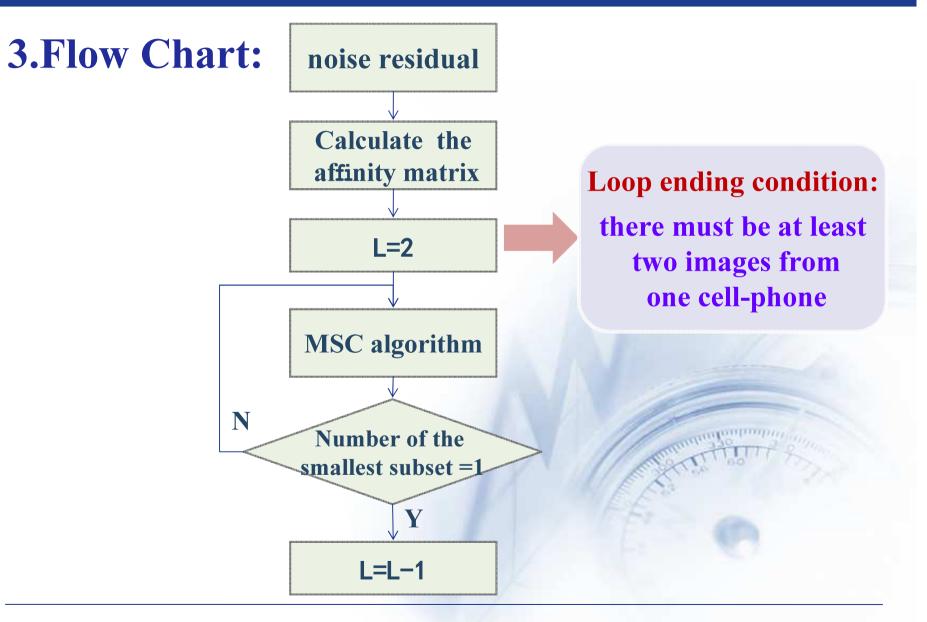
2. A graph based approach:

> Reference:

Bei-bei Liu, Heung-Kyu Lee, Yongjian Hu, Chang-Hee Choi : On Classification of Source Cameras: A Gragh Based Approac (WIFS, 2010)


> Overview of the approach:

L.A GRAPH BASED APPROACH


Graph Construction

Graph Partitioning

multi-class spectral clustering algorithm: The optimized partition indicator vectors are obtained by discretizing the L largest eigenvectors of normalized affinity matrix.

__. A GRAPH BASED APPROACH

4. Experiment

• Experiment1: 8 cell-phones, 4 brands

For each image, noise residual is computed on the green channel of the upper left 640×480 corner.

ID	Cell-Phone Model	Number	Resolution	
1	Sumsung i9000	20	2560×1920	
2	Sumsung SCH-W899	17	2560×1920	
3	Sony Ericsson U20i	20	2592×1944	
4	Sony Ericsson E15i	23	2048×1536	
5	Motorola Milestone	20	1280×960	1 of
6	Nokia 7610	20	640×480	
7	Nokia N73	22	640×480	
8	Nokia E50	23	640×480	

___. A GRAPH BASED APPROACH

4. Experiment

• Experiment1 result: classification accuracies of 8 cell-phones:

Subsets	ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	
1	18	0	2	0	0	0	0	0	
2	0	16	0	0	0	0	0	0	
3	0	1	17	0	0	1	2	1	
4	0	0	0	21	0	0	0	0	
5	0	0	0	1	20	0	3	0	
6	0	0	0	0	0	18	0	1	
7	0	0	0	1	0	0	17	0	NO.
8	2	0	1	0	0	1	0	21	
Ave. Accuracy	90%	94%	85%	91%	100%	90%	77%	91%	

4. Experiment

• Experiment 2:Five cell-phones, three brands

For each image, noise residual is computed on the green channel of the upper left 1280×960 corner.

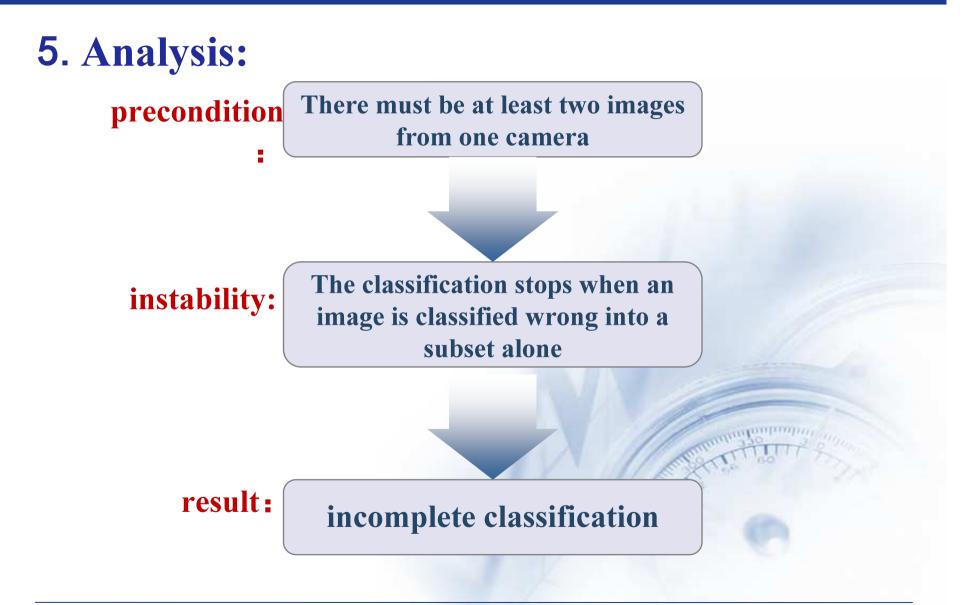
ID	Cell-Phone Model	Number	Resolution
1	Sumsung i9000	20	2560×1920
2	Sumsung SCH-W899	17	2560×1920
3	Sony Ericsson U20i	20	2592×1944
4	Sony Ericsson E15i	23	2048×1536
5	Motorola Milestone	20	1280×960

I.A GRAPH BASED APPROACH

4. Experiment

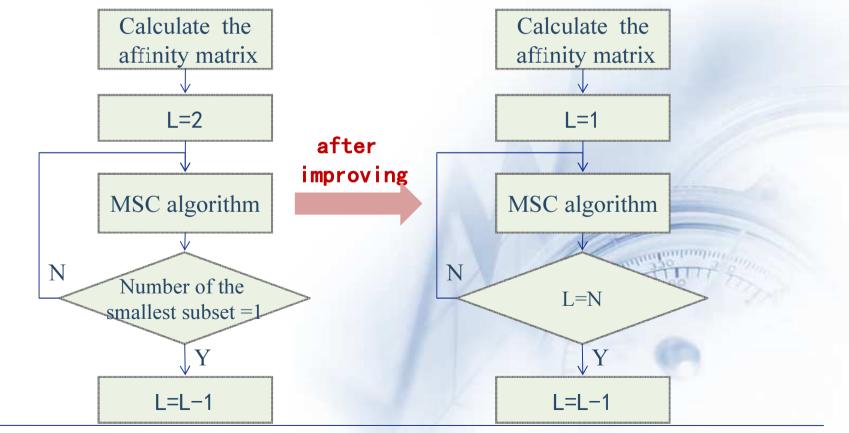
• Experiment 2 result: classification accuracies of 5 cell-phones

Subsets	SumS1	SumS2	SE1	SE2	Moto
1	19	0	10	13	3
2	1	10	0	2	15
3	0	7	10	8	2

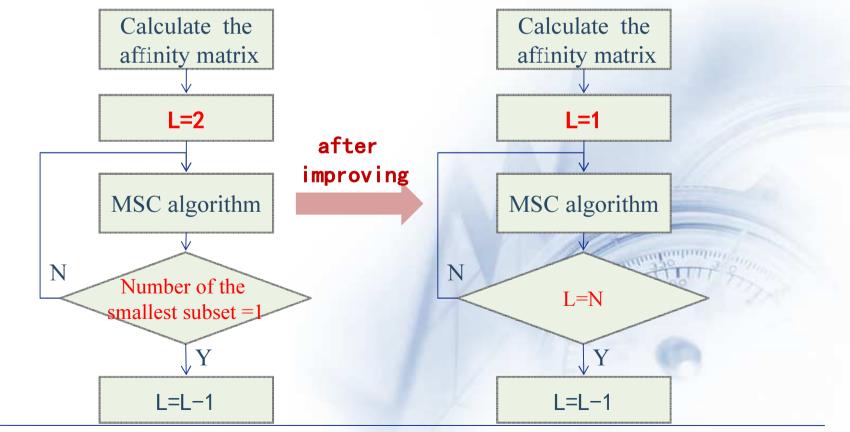

Why?

According to the result, the partition stops when it finds that the number of the smallest subset equals to 1 with L=4, so the final result is L=3,not L=5.

It happens owing to the loop ending condition.



1. The improvement of the approach


- Cancel the limiting condition
- Traversing method: attain N possibilities of classification by MSC, then extract the optimal classification

1. The improvement of the approach

- Cancel the limiting condition
- Traversing method: attain N possibilities of classification by MSC, then extract the optimal classification

2. Silhouette coefficient based approach

How to extract the optimal classification?

The use of <u>silhouette coefficient</u> combines both the measures of cohesion (inside clusters) and separation (among clusters)

✓ \mathcal{A}_i (cohesion): the average correlation of \mathcal{N}_i to all other noises in the same cluster.

✓ b_i (separation): the average correlation of n_i to all other noises in each of the other clusters, taking the average value with respect to all clusters.

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$
 $SC_q = \frac{1}{N} \sum_{i=1}^N s_i$

• The partition: $q^* \leftarrow \min_q(SC_q)$

3. Experiment

• Experiment1: 8 cell-phones, 4 brands

For each image, noise residual is computed on the green channel of the upper left 640×480 corner.

ID	Cell-Phone Model	Number	Resolution	
1	Sumsung i9000	20	2560×1920	
2	Sumsung SCH-W899	17	2560×1920	
3	Sony Ericsson U20i	20	2592×1944	
4	Sony Ericsson E15i	23	2048×1536	
5	Motorola Milestone	20	1280×960	- Tok
6	Nokia 7610	20	640×480	
7	Nokia N73	22	640×480	
8	Nokia E50	23	640×480	

3. Experiment

• Experiment1 result: classification accuracies of 8 cell-phones:

Subsets	ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8	
1	18	0	2	0	0	0	0	0	
2	0	16	0	0	0	0	0	0	
3	0	1	17	0	0	1	2	1	
4	0	0	0	21	0	0	0	0	
5	0	0	0	1	20	0	3	0	
6	0	0	0	0	0	18	0	1	
7	0	0	0	1	0	0	17	0	ND.
8	2	0	1	0	0	1	0	21	
Ave. Accuracy	90%	94%	85%	91%	100%	90%	77%	91%	

3. Experiment

• Experiment 2:Five cell-phones, three brands

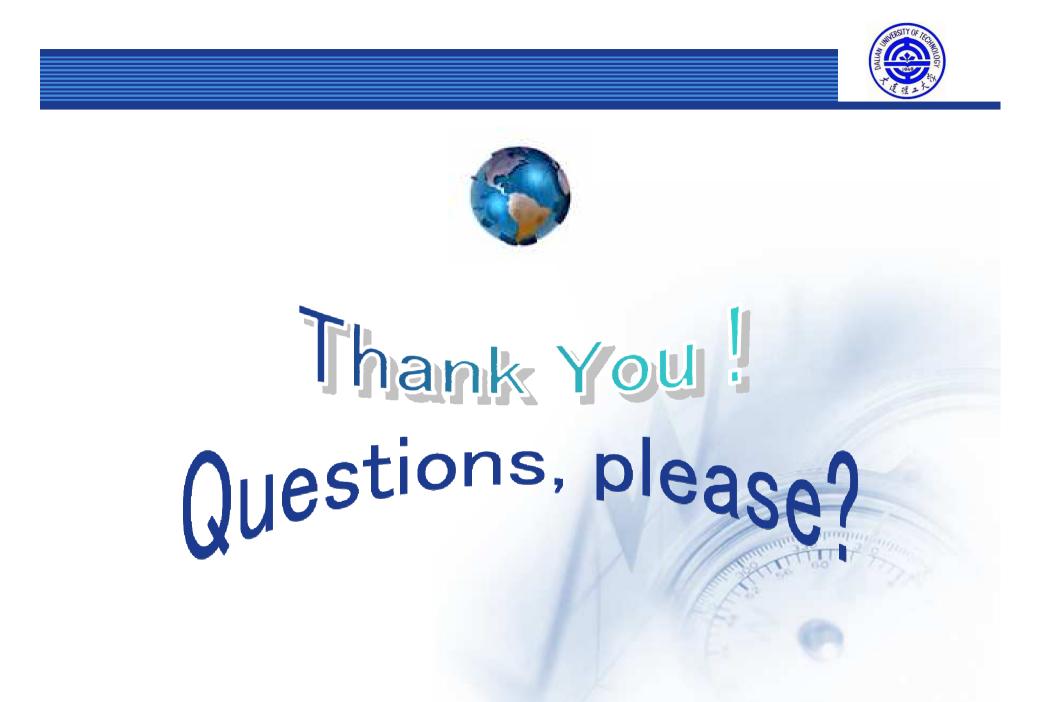
For each image, noise residual is computed on the green channel of the upper left 1280×960 corner.

ID	Cell-Phone Model	Number	Resolution
1	Sumsung i9000	20	2560×1920
2	Sumsung SCH-W899	17	2560×1920
3	Sony Ericsson U20i	20	2592×1944
4	Sony Ericsson E15i	23	2048×1536
5	Motorola Milestone	20	1280×960

Ξ. IMPROVEMENT

3. Experiment

• Classification accuracies of 5 cell-phones


Subsets	SumS1	umS1 SumS2 SE1		SE2	Moto
1	18	0	2	0	0
2	0	16	0	1	0
3	0	1	17	0	0
4	0	0	0	21	0
5	2	0	1	1	20
Ave. Accuracy	90%	94%	85%	91%	100%

3. Experiment

• The graph based approach is described as A, the improved approach is described as B. The comparison of A and B approaches :

Qb4-			A					B		
Subsets	ID1	ID2	ID3	ID4	ID5	ID1		ID3	ID4	ID5
1	19	0	10	13	3	18	0	2	0	0
2	1	10	0	2	15	0	16	0	1	0
3	0	7	10	8	2	0	1	17	0	0
4	\searrow	\searrow		\searrow	\searrow	0	0	0	21	0
5	\searrow				$\overline{}$	2	0	1	1	20
Ave. Accuracy	90%	59%	50%	0%	0%	90%	94%	85%	91%	100%

