Locality Sensitive Discriminative Dictionary Learning (ICIP 2015)

Jun Guo^{*}, Yanqing Guo, Yi Li, Bo Wang, Ming Li

School of Information and Communication Engineering, Dalian University of Technology, China guojun@mail.dlut.edu.cn

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

Dictionary Learning (DL)

• A basic framework of DL:

$$\min_{\boldsymbol{D},\boldsymbol{X}} \sum_{i=1}^{N} \left(|| \boldsymbol{y}_{i} - \boldsymbol{D}\boldsymbol{x}_{i} ||_{2}^{2} + \tau || \boldsymbol{x}_{i} ||_{p} \right)$$

$$\min_{\boldsymbol{D},\boldsymbol{X}} \left\| \boldsymbol{Y} - \boldsymbol{D}\boldsymbol{X} \right\|_{F}^{2} + \tau \left\| \boldsymbol{X} \right\|_{p}$$

- Training data: $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N] \in \mathbb{R}^{n \times N}$
- Dictionary: $\boldsymbol{D} = [\boldsymbol{d}_1, \dots, \boldsymbol{d}_K] \in \mathbb{R}^{n \times K}$
- Coding vectors: $X = [x_1, ..., x_N] \in \mathbb{R}^{K \times N}$
- Regularization parameter: $\tau \ge 0$

Emphasize representation rather than discrimination!

 $\| \mathbf{x}_{i} \|_{p} = 1$

Discriminative Dictionary Learning (DDL)

• A general formula of DDL:

 $\min_{\boldsymbol{D},\boldsymbol{X}} \left\| \boldsymbol{Y} - \boldsymbol{D} \boldsymbol{X} \right\|_{F}^{2} + \tau \left\| \boldsymbol{X} \right\|_{p} + \alpha f\left(\boldsymbol{Y}, \boldsymbol{D}, \boldsymbol{X}, \boldsymbol{H} \right)$

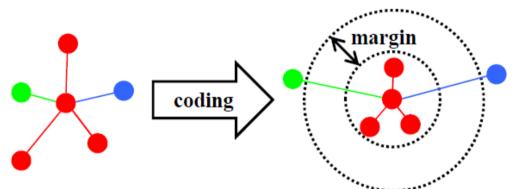
- Structured incoherence of dictionary
- Fisher discrimination on the dictionary and codes
- Label consistency of codes
- Transform-invariance of dictionary
- Joint dictionary learning and subspace clustering

.

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

Motivation of Our Work

• Illustration:

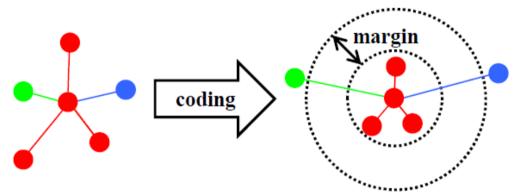


- DDL + kNN classifier
- In the coding space:
- > same-label neighbors are orderly preserved
- > neighbors with different labels are repelled

Maximize the **local** margin between different classes.

Motivation of Our Work

• Illustration:



- Integrate two significant characters into DL
- preserve ordinal locality
- ➤ strengthen discriminability

Locality Sensitive Discriminative Dictionary Learning (LSDDL)

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

- Construct two graphs via Gaussian kernel:
 - a within-class graph G_w
 - The corresponding weight matrix

$$W_{w,ij} = \begin{cases} w(y_i, y_j), & \text{if } y_i \in N_w(y_j) \text{ or } y_j \in N_w(y_i) \\ 0, & \text{otherwise.} \end{cases}$$

- a between-class graph G_b

> the corresponding weight matrix

$$\boldsymbol{W}_{b,ij} = \begin{cases} 1 - w(\boldsymbol{y}_i, \boldsymbol{y}_j), & \text{if } \boldsymbol{y}_i \in N_b(\boldsymbol{y}_j) \text{ or } \boldsymbol{y}_j \in N_b(\boldsymbol{y}_i) \\ 0, & \text{otherwise.} \end{cases}$$

- Determine a "good" coding process:
 - same-label neighbors are orderly preserved $\min_{X} \sum_{i=1}^{N} \sum_{j=1}^{N} ||\mathbf{x}_{i} - \mathbf{x}_{j}||_{2}^{2} W_{w,ij}$ noighbors with different labels are recalled
 - neighbors with different labels are repelled $\max_{X} \sum_{i=1}^{N} \sum_{j=1}^{N} || \mathbf{x}_{i} - \mathbf{x}_{j} ||_{2}^{2} \mathbf{W}_{b,ij}$
- Rewrite the objective:

$$\min_{X} \sum_{i=1}^{N} \sum_{j=1}^{N} || \mathbf{x}_{i} - \mathbf{x}_{j} ||_{2}^{2} (\mathbf{W}_{w,ij} - \lambda \mathbf{W}_{b,ij}) \implies \min_{X} Tr(\mathbf{X}^{T} \mathbf{X} \mathbf{L})$$

- The final objective function: $\min_{D,X} \| \mathbf{Y} - \mathbf{D}\mathbf{X} \|_{F}^{2} + \alpha Tr(\mathbf{X}^{T}\mathbf{X}\mathbf{L}) + \tau \| \mathbf{X} \|_{F}^{2}$
- Alternating Optimization

- Compute X column by column with fixed D $\mathbf{x}_{i}^{*} = \arg\min_{\mathbf{x}_{i}} ||\mathbf{y}_{i} - \mathbf{D}\mathbf{x}_{i}||_{2}^{2} + \tau ||\mathbf{x}_{i}||_{2}^{2} + \alpha [2\mathbf{x}_{i}^{T}(\mathbf{X}\mathbf{L}_{i}) - \mathbf{x}_{i}^{T}\mathbf{x}_{i}\mathbf{L}_{ii}]$

- Update D with fixed X $D^* = \arg \min_{D} ||Y - DX||_F^2$
- Alternatively minimized until convergence

- Alternating Optimization
 - Compute X column by column with fixed D

 $\mathbf{x}_{i}^{*} = \arg\min_{\mathbf{x}_{i}} \| \mathbf{y}_{i} - \mathbf{D}\mathbf{x}_{i} \|_{2}^{2} + \tau \| \mathbf{x}_{i} \|_{2}^{2} + \alpha [2\mathbf{x}_{i}^{T}(\mathbf{X}\mathbf{L}_{i}) - \mathbf{x}_{i}^{T}\mathbf{x}_{i}\mathbf{L}_{ii}]$

- First derivative: $2\boldsymbol{D}^T (\boldsymbol{D}\boldsymbol{x}_i \boldsymbol{y}_i) + 2\tau \boldsymbol{x}_i + 2\alpha \boldsymbol{X}\boldsymbol{L}_i$ Second derivative: $2 \left[\boldsymbol{D}^T \boldsymbol{D} + (\tau + \alpha \boldsymbol{L}_{ii}) \boldsymbol{I} \right]$
- > The objective function is convex for x_i
- Optimal solution

$$\boldsymbol{x}_{i}^{*} = \left[\boldsymbol{D}^{T}\boldsymbol{D} + (\tau + \alpha \boldsymbol{L}_{ii})\boldsymbol{I}\right]^{-1} \left(\boldsymbol{D}^{T}\boldsymbol{y}_{i} - \alpha \sum_{m \neq i} \boldsymbol{x}_{m} \boldsymbol{L}_{mi}\right)$$

- Alternating Optimization
 - Update D with fixed X

 $\boldsymbol{D}^* = \arg\min_{\boldsymbol{D}} \left\| \boldsymbol{Y} - \boldsymbol{D} \boldsymbol{X} \right\|_F^2$

- First derivative: $2(DX Y)X^T$
- > Second derivative: $2 \left[I \otimes (XX^T) \right]$
- \succ The objective function is convex for **D**
- Optimal solution

$$\boldsymbol{D}^* = \boldsymbol{Y}\boldsymbol{X}^T \left(\boldsymbol{X}\boldsymbol{X}^T + \eta \boldsymbol{I}\right)^{-1}$$

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

Experimental Setup

- Datasets and Features
 - Extended YaleB: 504-dimensional random-face features
 - AR: 540-dimensional random-face features
 - Caltech 101: 3000-dimensional BoVW+SPM features
- Comparing Algorithms
 - the baseline support vector machine (SVM)
 - the classical SRC [PAMI 2009] and CRC [ICCV 2011]
 - the novel locality-sensitive SRC (LSRC) [PR 2013]
 - the other famous DL methods: DLSI [CVPR 2010], FDDL
 [ICCV 2011], LC-KSVD [PAMI 2013], DDL-PC [ACCV 2012]
 - the recently proposed LPDDL [ICIP 2014]

Results

Classification accuracies (%) on three databases.

	Extended YaleB	AR	Caltech101
SVM	95.6	96.5	64.6
SRC	96.5	97.5	70.7
CRC	97.0	98.0	68.2
LSRC	95.7	97.4	73.4
DLSI	97.0	97.5	73.1
FDDL	96.7	97.5	73.2
LC-KSVD	96.7	97.8	73.6
DDL-PC	95.3	96.0	73.2
LPDDL	96.4	97.3	73.3
Ours	97.0	98.0	73.6

- Introduction
- Motivation of Our Work
- The Proposed Method
- Experimental Results
- Summarization and Future Work

Summarization

- Conclusion
 - Performance is competitive with previous arts.
 - The locality sensitive objective function is useful to DDL + kNN classifier.
- Main Contribution
 - Preserve local relationship of same-label points and induce a margin between points from different classes.
 - Utilize analytical solutions in both dictionary learning and coding phases.

Future Work

- Reducing the consumed time for crossvalidation in the training phase.
- Generalize our work to analysis dictionary learning framework:

$$\min_{\substack{\boldsymbol{\Omega}, \mathbf{X} \\ s.t.}} \| \mathbf{X} - \mathbf{\Omega} \mathbf{Y} \|_{F}^{2} \\ \| \mathbf{X} \|_{0} \leq T_{0}, \\ \| \omega_{i} \|_{2} = 1, i = 1, 2, \cdots$$

R. Rubinstein, A. M. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling. *Proc. IEEE*, 98(6):1045-1057, Jun. 2010.

Thank you!

Questions please?