Source Camera Identification Forensics Based on Wavelet Features

Bo Wang, Yiping Guo, Xiangwei Kong, Fanjie Meng

Dalian University of Technology, China

Outline

- Introduction
- Image features based identification
- Kharrazi's method
- Our method
- Experimental results and conclusions

Introduction

Source Camera Identification:

Identifying the source camera of a digital photograph

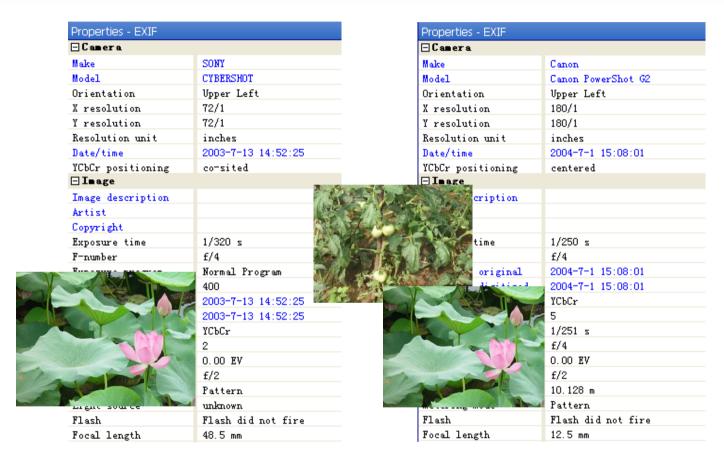
Used for:

Establishing the origin of legal photographic evidence

Active and Passive Identification

Active Identification

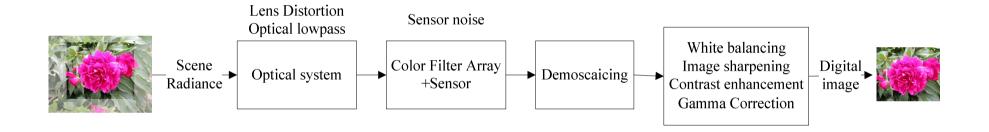
Embed watermarks


No watermarks in most of digital photographics

Passive Identification

- Do not need embed any information
- Only using image data

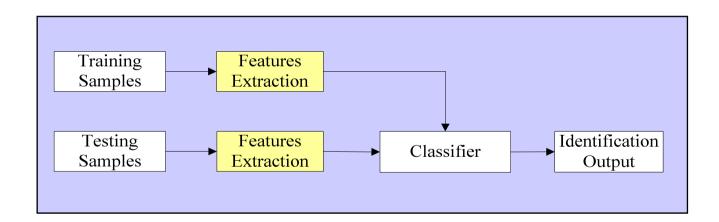
Our method is a passive identification


Using EXIF for Identification

- which one is its original EXIF? The left one.
- The EXIF of the right one is replaced by another image.

Image Features Based Identification

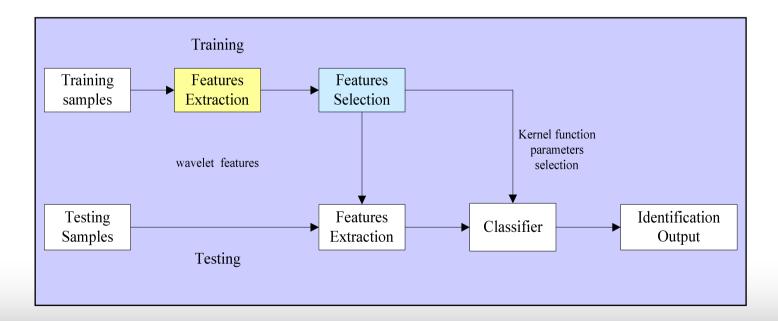
Imaging pipeline in digital cameras


Differences in the processing details of each stage among various models of digital cameras

Differences of image features in the output images from cameras of different models

Kharrazi's Method

- Polytechnic University, Brooklyn, NY,USA: Mehdi Kharrazi, Husrev T. Sencar, Nasir Memon
- Using Pattern Recognition


• Image Features: color features, IQM features, mean of wavelet coefficients

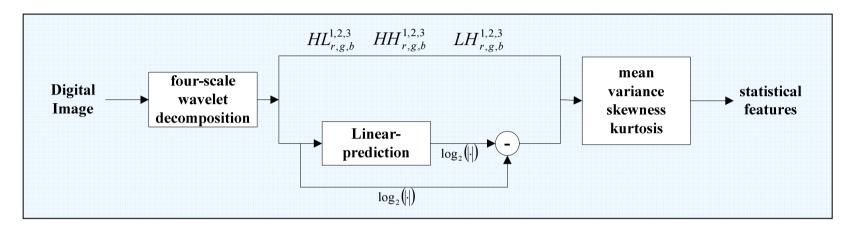
Can we do better?

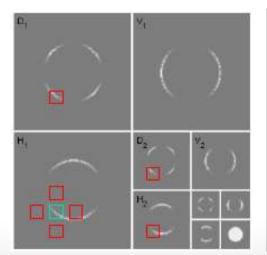
- Shortage of Kharrazi's method
- Identification accuracy is not reliable
- Why?
- Image Features used are not effective
- What we do?
- Extract more effective features

Our method

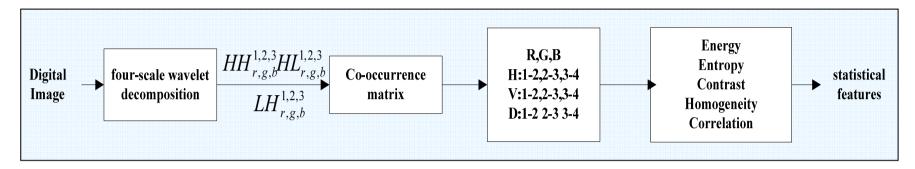
- Features Extraction
- Features Selection
- Classification

Wavelet Features


- Higher-order wavelet statistics
- > Statistics of linear prediction of wavelet coefficients
 - A kind of filter operation in wavelet domain
 - Less dependence on image content
- Wavelet Coefficient Co-occurrence statistics
- ➤ Distances of co-occurrence matrices in the same orientation between different scales


Wavelet features

Differences in impact of imaging pipelines on wavelet domain


Higher-order Wavelet Features

$$\begin{aligned} \left| V_{i}^{g} \left(x, y \right) \right| &= \omega_{1} \left| V_{i}^{g} \left(x - 1, y \right) \right| + \omega_{2} \left| V_{i}^{g} \left(x + 1, y \right) \right| + \omega_{3} \left| V_{i}^{g} \left(x, y - 1 \right) \right| \\ &+ \omega_{4} \left| V_{i}^{g} \left(x, y + 1 \right) \right| + \omega_{5} \left| V_{i+1}^{g} \left(x / 2, y / 2 \right) \right| + \omega_{6} \left| V_{i}^{g} \left(x, y \right) \right| \\ &+ \omega_{7} \left| D_{i+1}^{g} \left(x / 2, y / 2 \right) \right| + \omega_{8} \left| V_{i}^{r} \left(x, y \right) \right| + \omega_{9} \left| V_{i}^{b} \left(x, y \right) \right| \\ \vec{\upsilon} &= Q \vec{\omega} \qquad E \left(\vec{\omega} \right) = \left[\vec{\upsilon} - Q \vec{\omega} \right]^{2} \qquad \frac{dE(\vec{\omega})}{d\vec{\omega}} = 2Q^{T} (\vec{\upsilon} - Q \vec{\omega}) \\ \vec{\omega} &= (Q^{T} Q)^{-1} Q^{T} \vec{\upsilon} \qquad \vec{p} = \log(\vec{\upsilon}) - \log(\left| Q \vec{\omega} \right|) \end{aligned}$$

Wavelet Coefficient Co-occurrence Statistics

$$DC(V_{i}^{c}) = CV_{i}^{c} - CV_{i+1}^{c}$$

$$DC(V_{i}^{c}) = CH_{i}^{c} - CV_{i+1}^{c}$$

$$DC(H_{i}^{c}) = CH_{i}^{c} - CH_{i+1}^{c}$$

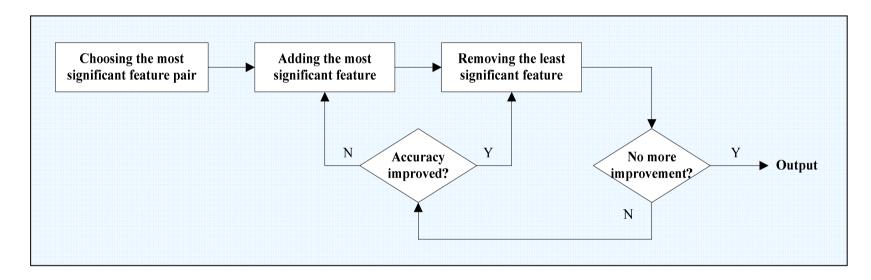
$$DC(D_{i}^{c}) = CD_{i}^{c} - CD_{i+1}^{c}$$

$$Contrast = \sum_{i} \sum_{j} (i-j)^{2} DC[i,j]$$

$$CV_{i}^{c} CH_{i}^{c} CD_{i}^{c} : \text{vertical, horizontal, and diagonal subbands' co-occurrence matrices}$$

$$i = 1,2,3,4 \quad c = r,g,b$$

$$Energy = \sum_{i} \sum_{j} DC^{2}[i,j]$$


$$Contrast = \sum_{i} \sum_{j} (i-j)^{2} DC[i,j]$$

$$Homogeneity = \sum_{i} \sum_{j} \frac{DC(i,j)}{1+|i-j|}$$

$$Correlation = \sum_{i} \sum_{j} (i-\mu_{i})(j-\mu_{j})DC[i,j]$$

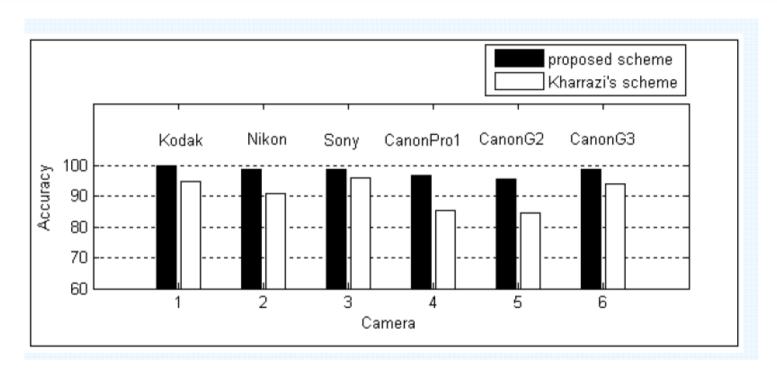
Feature Selection and Classification

Sequential Forward Feature Selection (SFFS)

- Support Vector Machine (SVM)
 - C-support vector classification with non-linear RBF kernel

Experiment

• Experiment samples and parameters


	Camera Pa	rameters	Sample image parameters		
Cameras	Sensor	Max resolution	Image resolution	Image format	
Kodak DC290	Unspecified CCD	2240*1500	2240*1500	JPEG	
Nikon E5700	2/3 inch CCD	2560*1920	1600*1200	JPEG	
Sony DSC-F828	2/3 inch CCD	3264*2448	1280*960	JPEG	
Canon PowerShot Pro1	2/3 inch CCD	3264*2448	1024*768	JPEG	
Canon PowerShot G2	1/1.8 inch CCD	2272*1704	1024*768 1600*1200 2272*1704	JPEG	
Canon PowerShot G3	1/1.8 inch CCD	2272*1704	2272*1704	JPEG	

Experiment result of our method

Confusion matrix

Camera	Kodak	Nikon	Sony	CanonPro1	CanonG2	CanonG3	Accuracy
Kodak DC290	150	0	0	0	0	0	100%
Nikon 5700	0	148	0	2	0	0	98.7%
Sony DSC-F828	0	2	148	0	0	0	98.7%
Canon PowerShot Pro1	0	0	1	145	4	0	96.7%
Canon PowerShot G2	0	0	0	3	143	4	95.3%
Canon PowerShot G3	0	0	0	0	2	148	98.7%

Comparison with Kharrazi's method

Camera	Kodak	Nikon	Sony	CanonPro1	CanonG2	CanonG3	Accuracy
Kharrazi's method	94.7%	91.3%	96.3%	85.3%	84.7%	93.3%	90.9%
Our method	100%	98.7%	98.7%	96.7% 11.4%	95.3% 10.6%	98.7% 75.4%	98.2%

Conclusions

- 1. Introduce feature based source camera identification
- 2. Discuss a classic feature based identification method
- 3. Give a new source camera identification method based on wavelet features

Thank you!