

Camera Source Identification with Limited Labeled Training Set

Yue Tan¹, Bo Wang¹, Ming Li¹, Yanqing Guo¹, Xiangwei Kong¹, Yunqing Shi²

¹ School of Information and Communication Engineering, Dalian University of Technology

² New Jersey Institute of Technology

bowang@dlut.edu.cn

- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

 Tracing a unique intrinsic fingerprint && Using statistical characteristics

(III) E manaiphane uz. - (- - - - - - - -

19 SOLEK AKKULER

5/2015 IWDW 2015 - Presentation

- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

Motivation of Our Work

Approaches	Accuracy	Samples
Estimation of CFA pattern and interpolation kernel. [8]	90%	200
Color features, image quality measurement (IQM), high order wavelet characteristics (HOWS).[9]	88.02%	150
Uniform gray-scale invariant local binary patterns (LBP)[10]	98%	150~300

Sufficient Labeled Training Samples

High Accuracy

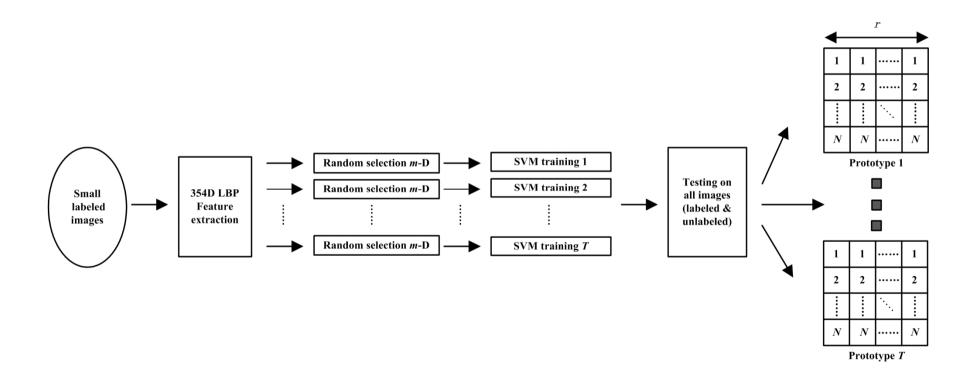
Limited Labeled Training Samples

Accuracy Drop
Below 10%

- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

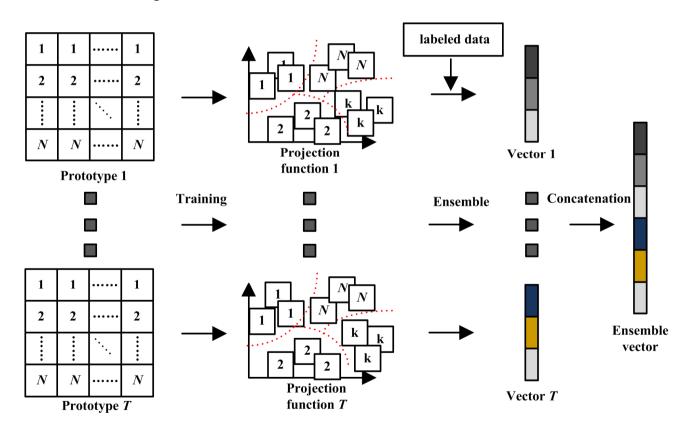
The Proposed Method

• The Framework of Proposed Method:


- Constructing Prototype Set: Using the information of unlabeled samples.
- Ensemble Projection: Making combination of the information from all prototypes.

The Proposed Method

Constructing Prototype Set:



10/15/2015 IWDW 2015 - Presentation 9/20

The Proposed Method

• Ensemble Projection:

10/15/2015 IWDW 2015 - Presentation 10/20

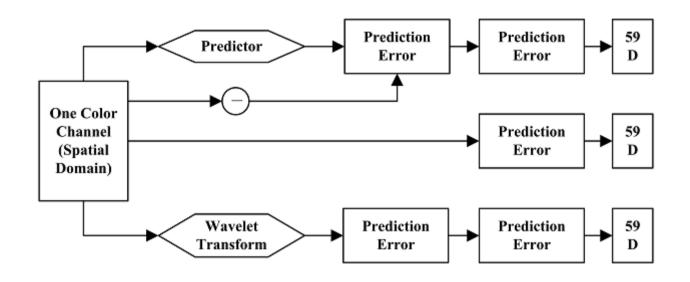
- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

Dataset & Features

Experimental Dataset

Camera model	Resolution	Abbr.
Casio_EX_Z150	3264×2448	CEZ
$Kodak_M1063$	3664×2748	KM1
Nikon_CoolPixS710	4352×3264	NCP
Olympus_mju	3648×2736	OMJ
Panasonic_DMC	3264×2736	PDM
Praktica_DCZ5.9	2560×1920	PDC
Nikon_D200	3872×2592	ND1
Ricoh_GX100	3648×2736	RGX
FujiFilm_FinePixJ50	3264×2448	FFP
Pentax_OptioA40	4000×3000	POA
Rollei_RCP_7325X	3072×2304	RRC
Samsung_L74wide	3072×2304	SLW
Samsung_NV15	3648×2736	SNV
Sony_DSC_H50	3456×2592	SD1
Sony_DSC_T77	3648×2736	SD2
Agfa_Sensor530s	2560×1920	AFS
Canon_Ixus70	3072×2304	CI7
$Nikon_D70$	3008×2000	ND2

Dresden Image Dataset:


- ► 18 camera models
- ➤ 350 JPEG images for each model

Dataset & Features

Features: LBP (Local Binary Pattern)

Camera model identication using local binary patterns. In Proc. IEEE Int. Conf. Multimedia & Expo (ICME), Melbourne, Australia, pp. 392-397(2012).

Average confusion matrix

Average TP=90.2		Predicted CEZ KM1 NCP OM PDM PDC ND1 RGX FFP POARRC SLM SNY SD1 SD2 AFS C17 ND2																	
		CEZ	KM1	NCP	OMJ	PDM	IPDC	ND1	RGX	FFP	POA	RRC	SLM	SNY	SD1	SD2	AFS	CI7	ND2
	CEZ	87.7	*	1.3	*	2.3	*	*	*	*	3.7	*	*	3.0	*	*	*	*	*
	KM1	*	90.0	*	*	1.3	*	*	*	*	1.3	1.0	*	*	4.0	*	*	*	*
	NCP	*	*	92.7	*	*	2.7	*	*	*	1.7	*	*	*	*	*	*	1.0	*
	OMJ	*	*	*	92.0	*	*	*	*	*	*	*	4.0	2.7	*	*	*	*	*
	PDM	*	1.3	1.0	1.0	90.0	2.3	*	*	*	1.0	*	*	*	1.3	*	*	*	*
	PDC	*	*	*	*	1.7	95.3	*	*	*	*	*	*	2.3	*	*	*	*	*
	ND1	*	*	*	*	1.7	2.0	90.0	*	*	*	*	1.0	3.7	*	*	*	1.0	*
<u> </u>	RGX	*	5.0	*	*	*	*	*	85.0	*	*	*	*	1.0	4.3	2.7	*	*	1.0
Ĕ	FFP	*	*	*	*	*	1.0	*	*	90.0	*	2.3	*	2.0	*	*	*	*	2.7
Actual	POA	*	*	*	1.7	*	*	*	*	*	89.3	*	1.0	*	*	*	1.0	*	4.3
₹	RRC	*	*	*	*	*	*	2.7	*	*	*	92.3	*	2.0	*	*	*	*	*
	SLM	*	*	1.3	*	*	*	*	*	*	*	1.3	93.7	3.0	*	*	*	*	*
	SNY	*	*	*	*	*	4.0	1.0	*	1.0	*	*	*	89.0	1.0	*	*	*	*
	SD1	*	1.3	*	*	*	*	*	6.7	*	*	*	*	*	88.7	2.3	*	*	*
	SD2	*	*	*	*	*	*	*	2.0	*	*	*	*	*	9.0	88.0	*	*	*
	AFS	*	*	*	*	*	*	*	*	*	1.3	1.0	*	*	*	1.0	91.0	*	5.0
	CI7	1.0	*	*	*	1.0	*	*	*	*	*	*	*	1.3	*	*	*	94.3	*
	ND2	*	*	*	*	*	*	1.0	3.7	*	3.7	*	*	*	1.0	*	5.3	*	83.7

The number of labeled samples is L = 50.

The number of prototype sets is T=200.

The number of the samples of each class in the prototype sets is r = 50.

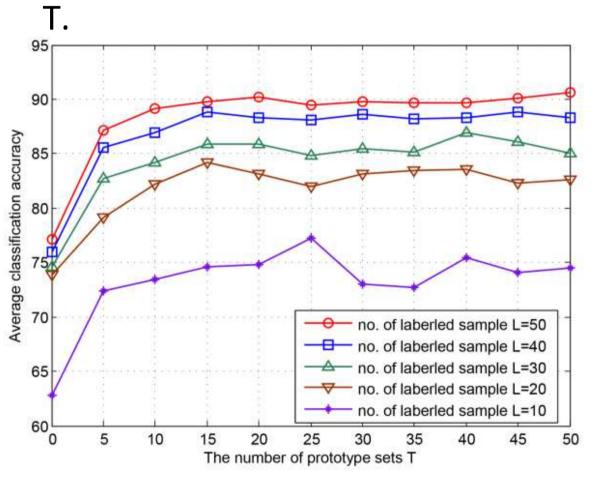
 Average accuracy of camera source identification with different number of labeled image samples L.

Algorithm	L = 50	L = 40	L = 30	L = 20	L = 10
LBP	36.0%	26.7%	29.3%	20.9%	8.4%
\mathbf{EP}	90.2 %	88.3 %	85.0 %	82.6 %	74.5 %

Sufficient Labeled Samples

High Accuracy

Limited Labeled Samples


Accuracy Drop

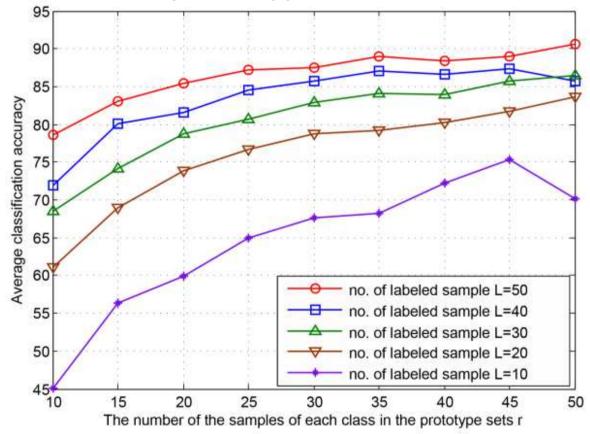
Below 10%

Maintain 74.5%

Accuracy rate versus the number of prototype sets

T>15, *L*=50:

Accuracy maintained at a


high level.

L<10:

Result presents a lot of volatility.

 Accuracy rate versus the number of the samples of each class in the prototype sets r.

10/15/2015

- Introduction
- Motivation of Our Work
- Proposed Method
- Experiments and Results
- Conclusions

Conclusions

Main Contribution

 Proposed EP method achieves a notable higher average accuracy than previous algorithms when labeled training samples is limited.

Future Work

- Generalize our work to other features.
- Generalize our work to improve the identification accuracy rate.

Thank you!

Questions please?

Email: bowang@dlut.edu.cn

