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1. Motivation

� Cover-source Mismatch

原始性？

Training set
Testing set



Conventional Steganalysis

Sharp performance declining

HPF

Quantification 

& truncation
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Deep Steganalysis
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2. Research

� 1st Step

Whether there is cover-source mismatch in 

deep steganalysis?

BOSSBase

ImageNet

MIRFlickr

Common steganalysis dataset

Good samples from real world 

scenario



BossBase

2.1 Data processing

ImageNet MIRFlickr

mini-I mini-M

Select 10000 

images randomly

Resize to 512×512

BossBase

Select 10000 

images randomly

Resize to 512×512



2.1 Texture complexity

Information loss: RAW->JPEG  >  RAW->PGM

BOSSBase is more textured than mini-I & mini-M.





2.2 Deep steganalysis model
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Experimental Results

Sharp accuracy decreasing by Cover-source mismatch!



2.3 A-distance
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A linear form of binary classifier error

measure the discrepancy between 2 databases in the 

latent space

Input images
Feature 

Extraction
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Steganalysis 

Model

error



Match the experimental 

results well

2.3 A-distance
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3.1 Domain adaptation

Transfer the model trained on labeled source database to 

unlabeled target database without sharp accuracy 

reduction

similar

Cover-source mismatch in 

steganalysis

JMMD(Joint Maximum mean discrepancy):

Measure and restrict the discrepancy between source and target 

domain in reproducing kernel Hilbert space



3.2 J-Net



Deep steganalysis model



3.2 J-Net



3.3 Results

The accuracy promotion of J-Net(%)

7%-10%!
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