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Abstract: In this study, the authors consider additive spread-spectrum (SS) data embedding in transform-domain host
data. Conventional additive SS embedding schemes use an equal-amplitude modulated carrier to deposit one
information symbol across a group of host data coefficients which act as interference to SS signal of interest. If there is
a flexibility of assigning different amplitudes across symbol bits, the probability of error can be further reduced by
adaptively allocating amplitude to each symbol bit based on its own host/interference. In this study, they present a
novel amplitude-adaptive SS embedding scheme. Particularly, symbol-by-symbol adaptive amplitude allocation
algorithms are developed to compensate for the impact from the known interference. They aim at designing the SS
embedding amplitude for each symbol adaptively in order to minimise the receiver bit-error-rate (BER) at any given
distortion level. Then, optimised amplitude allocation for multi-carrier/multi-message embedding in the same host data
is studied as well. Finally, they consider the problem of amplitude optimisation for an ideal scenario where no external
noise is introduced during embedding and transmission. Extensive experimental results illustrate that the proposed
amplitude-adaptive SS embedding scheme can provide order-of-magnitude performance improvement over several
other state-of-the-art SS embedding schemes.
1 Introduction

The rapid advances in information and communication technologies
allow people to easily transfer and exchange massive amounts of
digital multimedia such as digital images, video, and audio.
Consequently, it has become extremely important to ensure the
security of the exchanged information. As a result, digital data
embedding has raised extensive attention in recent years with the
development of various security/privacy protection applications
such as annotation, copyright marking, watermarking, ownership
protection, authentication, digital fingerprint, and covert
communications or steganography [1–8]. Different applications of
data embedding require different satisfactory tradeoffs between the
following four basic attributes [9]: payload, robustness,
transparency, and security.

Determining the embedding process is the most important step in
the design of a data embedding system for a particular application.
Payload rate, distortion, data detector design, and recovery
performance depend directly on how the data is inserted into the
host. Data embedding can be performed in the original time or
spatial domain [10–14]. While embedding directly in the original
host signal domain may be desirable for system complexity
purposes, embedding in a transform domain can take advantage of
the particular transform-domain properties [15–23].

Spread-spectrum (SS) data embedding [24–33] is an important
branch of transform-domain data embedding technologies and
enjoys wide popularity in data hiding community. In SS
embedding, the secret signal is spread over a wide range of host
frequency coefficients. In direct analogy to SS digital
communications systems, conventional additive SS embedding
methods [24–30] use an equal-amplitude modulated carrier to
deposit one information symbol across a group of host data
coefficients or a linearly transformed version of the host data
coefficients. While a constant embedding amplitude is used in the
additive SS embedding, in the multiplicative SS embedding
[31–33] the embedding amplitude is propositional to the value of
the host signal. In both additive and multiplicative embedding
algorithms, the host signal always behaves as a source of
interference to the embedded data of interest. Nevertheless, it
should also be aware that this interference is known to the
embedder. Such knowledge can be exploited appropriately to
facilitate the task of the receiver at the other end and minimise the
recovery error rate for a given host distortion level.

Utilising the knowledge of the second-order statistics of host, the
recently presented eigen-design optimal carrier [27] can maximise
the signal-to-interference-noise ratio (SINR) at the output of the
corresponding maximum-SINR linear filter. Since the impact of
interference from the host signal is explicitly known to the
embedders, the known interference can be further alleviated at
embedder side with appropriate operation. If there is a flexibility
of assigning different amplitudes across symbol bits, the
probability of error can be further reduced by allocating amplitude
to each symbol bit adaptively with its own host/interference.

The problem of designing different amplitudes for SS embedding
to provide better recovery performance was first investigated in [30]
where two levels of amplitude are designed by exploring the
correlation between the host and the carrier as well as the
information bit. This scheme is shown to provide better watermark
decoding performance than the traditional SS schemes. However,
the knowledge of the host signal is not fully exploited by using
just two levels of embedding amplitude. Clearly, if each symbol
bit is assigned any positive-valued amplitude, the performance of
recovery can be further improved.

In this study, we present a novel amplitude-adaptive SS
embedding scheme. Symbol-by-symbol adaptive amplitude
allocation algorithms are developed to compensate for the impact
from the known interference. We aim at designing the SS
embedding amplitude for each symbol adaptively in order to
minimise the receiver bit-error-rate (BER) at any given distortion
level and to minimise – conversely – the distortion at any target
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BER. We assign an embedding amplitude for each symbol (i.e. the
message) adaptively based on the symbol value and its
corresponding host vector. A computationally expensive Karush–
Kuhn–Tucker (KKT)-conditions-based optimal amplitude
allocation algorithm and two light-complexity waterfilling-based
sub-optimal amplitude allocation algorithms are developed to
adaptively assign amplitude to each symbol bit with any given
total distortion budget. Extensive experimental results illustrate
that the proposed amplitude-adaptive SS embedding approach can
provide order-of-magnitude data recovery performance improvement
over other state-of-the-art SS embedding schemes. Particularly, the
proposed prioritised waterfilling-based embedding amplitude
allocation can offer satisfactory recovery performance with all
allowable distortion levels as well as has very low computational
complexity. In addition, similar to the conventional SS schemes, the
proposed amplitude-adaptive SS embedding scheme does not
require any additional information at the data detector side and the
simple data detector does not need to be modified.

Our effort is also extended to develop amplitude-adaptive
multi-carrier (multi-message) SS embedding scheme. In practice,
an embedder may favour multi-carrier SS transform-domain
embedding to increase payload rate and/or to deliver distinct
messages to different receipts. In this case, we aim to minimise
average BER over all embedded messages at any given distortion
level as well as guarantee the fairness of messages. Finally, we
consider an ideal scenario where no external noise is introduced
during embedding and transmission and the amplitude
optimisation is investigated for this case.

The rest of this paper is organised as follows. In Section 2, the
state-of-the-art SS embedding schemes are reviewed and
summarised. Then, in Section 3 amplitude-adaptive SS embedding
scheme is presented and three amplitude allocation algorithms are
developed. In Section 4, the studies of adaptive amplitude
allocation are extended to multi-carrier SS embedding scheme. In
Section 5, amplitude allocation for SS embedding without external
noise is investigated as an ideal scenario. Section 6 is devoted to
experimental studies and comparisons. Finally, a few concluding
remarks are drawn in Section 7.

The following notation is used throughout this paper. Boldface
lower-case letters indicate column vectors and boldface upper-case
letters indicate matrices; R denotes the set of all real numbers; ()T

denotes matrix transpose; IL is the L × L identity matrix; sgn{ · }
denotes zero-threshold quantisation; E{ · } represents statistical
expectation; | · | and ‖ · ‖ are the scalar magnitude and vector
norm, respectively; and finally, |{ · }| denotes the cardinality of a set.
2 Conventional SS embedding schemes

Consider a host image H [ MN1×N2 where M is the finite image
alphabet and N1 × N2 is the image size in pixels. Without loss of
generality, the image H is partitioned into M local
non-overlapping blocks of size N1N2/M. Each block,
H1, H2, . . . , HM , is to carry one embedded information bit.
Embedding is performed in a two-dimensional transform-domain
T such as discrete cosine transform (DCT), discrete wavelet
transform (DWT) etc. After transform calculation and vectorisation
(for example, by conventional zig-zag scanning), we obtain
T (H i) [ R(N1N2/M ), i = 1, 2, . . . , M . From the transform-
domain vectors T (H i), we choose a fixed subset of L≤ (N1N2/M )
coefficients (bins) to form the final host vectors xi [ RL, i = 1, 2,
…, M. It is common and appropriate to avoid the dc coefficient
(if applicable) due to high perceptual sensitivity in changes of the
dc value.

To draw a parallelism with SS communications systems,
conventional SS embedding treats embedded data as the SS signal
of interest transmitted through a noisy ‘channel’ (the host). The
disturbance to the SS signal of interest is the host data themselves
plus potential external noise due to physical transmission of the
watermarked data and/or processing/attacking. In particular, the
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classic transform-domain SS embedding is carried out by

yi = Abis+ xi + n, i = 1, . . . , M , (1)

where information bit bi∈ {±1} is embedded in the
transform-domain host vector xi [ RL via additive SS embedding
by means of a (normalised) carrier (spreading sequence/signature)
s [ RL, ‖ s ‖= 1, with a corresponding embedding amplitude
A≥ 0. For the sake of generality, n represents potential external
noise [External noise is frequently viewed as a suitable model for
quantisation errors, channel transmission disturbances, and/or
image processing attacks.] of mean 0 and autocorrelation matrix
s2
nIL, s

2
n . 0.

In an effort to reduce the interference from the host signal, the host
vectors xi, i = 1, …, M, can be steered away from the embedding
carrier using an operator of the form (IL − cssT) with a parameter
c∈R, and the carrier s [ RL. The composite signal of additive SS
embedding on linearly transformed host data is

yi = Abis+ (IL − cssT)xi + n, i = 1, . . . , M , (2)

where information bit bi is embedded in the ith linearly transformed
host data vector (IL − cssT)xi. The optimal design of the parameter c
has been investigated in [25–27]. The SS embedding scheme in (2) is
often referred to as improved SS (ISS) embedding.

The linear transformation operation on the host aims to suppress
the interference/host xi in the second-order statistics sense and the
embedding amplitude A is fixed for all information bits. However,
it should be noted that the interference from the host signal is
explicitly known to the embedders. Motivated by this prior
knowledge, in [30] Valizadeh and Wang proposed the
correlation-aware ISS (CAISS) embedding scheme by
incorporating ISS and the correlation-and-bit-aware concept.
Particularly, in [30] two levels of amplitude are designed by
exploring the correlation between the host and the carrier as well
as the information bit. The CAISS embedding scheme can be
described as follows

yi =
xi + sA1 + n, if sTxi ≥ 0, bi = +1,
xi − sA2 − lhs(s

Tx)+ n, if sTxi ≥ 0, bi = −1,
xi − sA1 + n, if sTxi , 0, bi = −1,
xi + sA2 − lhs(s

Tx)+ n, if sTxi , 0, bi = +1,

⎧⎪⎪⎨
⎪⎪⎩ (3)

where lh is a parameter determined by the allowed distortion.
This CAISS scheme has been shown to provide better embedded

data decoding performance than the traditional SS and ISS
embedding schemes. However, the knowledge of the host signal xi
has not been fully exploited and only two levels of embedding
amplitude are considered in the CAISS scheme. Clearly, if each
symbol bit is adaptively assigned an embedding amplitude, the
recovery performance can be further improved.

In the next section, we present a novel amplitude-adaptive SS
embedding scheme. Symbol-by-symbol adaptive amplitude
allocation algorithms are developed to compensate for the impact
from the known interference. We aim at designing the SS
embedding amplitude for each symbol adaptively to minimise the
receiver BER at any given distortion level.
3 Amplitude-adaptive SS embedding

In parallel to (1), our proposed amplitude-adaptive SS embedding
scheme has a form of

yi = Aibis+ xi + n, i = 1, . . . , M , (4)

where the embedding amplitudes Ai≥ 0, i = 1, …, M, need to be
adaptively optimised.

Squared Euclidean metric is a common choice to measure the
distortion. The squared distortion to the ith host vector (i.e. the ith
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block of image) due to the embedded data only is

Di = ‖(Aibis+ xi)− xi‖2 = A2
i , i = 1, . . . , M . (5)

Total squared distortion to whole image is

Dt =
∑M
i=1

A2
i (6)

and the mean-squared (MS) distortion is

DMS = E{‖Aibi‖2} = 1

M
Dt. (7)

The intended recipient of the message can perform embedded bit
detection by looking at the sign of the output of a filter w

b̂i = sgn{wTyi}. (8)

Matched filter w = s has been widely adopted by the intended
recipient to detect embedded bits

b̂i = sgn sTyi
{ }

= sgn{Aibi + sTxi + sTn}

= sgn{Aibi + ri + n} (9)

where we define ri W sTxi which is the interference from the host xi
to the information bit bi. In particular, the interference ρi can be
approximately viewed as having Laplace distribution [34] with
zero mean and variance

s2
rW E{r2} = sTRxs

RxW E{xxT} = 1

M

∑M
i=1

xix
T
i

is the autocorrelation matrix of the host data x. The Gaussian noise n
has zero mean and variance s2

n.
In the application of data embedding, the host/interference xi,

i = 1, …, M, is known before embedding. With a carrier s and
host vectors xi, i = 1, …, M, the interference ri W sTxi, i = 1, …,
M, in the detector (9) is deterministic and known at the embedding
side. Therefore, instead of treating ρi as an unknown or partially
known interference, we attempt to fully exploit the knowledge of
ρi for embedding. If there is flexibility in assigning different
amplitudes Ai, i = 1, …, M, across symbol bits, the probability of
error can be further reduced by allocating amplitude to each
symbol bit adaptively with its own interference ρi. In this paper,
we aim to seek symbol-by-symbol adaptive amplitude allocation/
optimisation to minimise the probability of error with a given total
distortion budget, or minimise – conversely – the total distortion
level at any target probability of error. We aim at minimising the
probability of error of detector (9) at any given total distortion
level Dt (or MS distortion DMS).

We rewrite the detector (9) as

b̂i = sgn (Ai + ribi)bi + n
{ }

= sgn (Ai + ai)bi + n
{ }

(10)

where we define aiWribi = sTxibi. Before embedding, αi, i = 1, …,
M, can be pre-computed with known carrier s, host xi, and
information bit bi. With assumption that ρi has zero-mean
symmetric distribution such as the Laplace distribution and αi has
the same distribution as ρi.

Now SS data embedding can be viewed as a communication
system with M individual sub-channels: in each sub-channel (i.e.
each block), the information bit bi is multiplied with a coefficient
140
(Ai + αi) and then transmitted over a noisy channel. If it is allowed
to model the external noise n as white Gaussian random variable
with zero mean and variance s2

n, the probability of error of the ith
detected embedded bit is [We need to emphasise that Pei in (11)
has range from 0 to 1 because coefficient Ai + αi might be negative
while Pei is not >0.5 in common communication systems.]

Pei = Q
Ai + ai

sn

( )
, i = 1, . . . , M , (11)

where

Q(a) =
∫1
a

1����
2p

√ e−t2/2 dt

The probability of error of the ith bit Pei depends on both the
deterministic coefficient αi and the embedding amplitude Ai which
is a limited resource with a given total distortion level
Dt =

∑M
i=1 A

2
i . In this study, with prior knowledge of αi, i = 1,

…, M, we aim to efficiently allocate embedding amplitude Ai≥ 0
(equivalently allocate distortion Di = A2

i ), i = 1, …, M, for each
symbol bit to minimise the average probability of error

argmin
Ai , i=1, ...,M

PeW
1

M

∑M
i=1

Pei (12)

s.t.
∑M
i=1

A2
i = Dt, (13)

Ai ≥ 0, i = 1, . . . , M . (14)
3.1 KKT-conditions-based embedding amplitude
allocation

We first attempt to solve non-linear optimisation problems (12)–(14)
by examining the KKT conditions [35]. The findings are summarised
in the following proposition whose proof is provided in the
Appendix.

Proposition 1: Consider optimisation problems (12)–(14). Then, Ai,
i = 1, …, M, satisfying the following KKT conditions is a strict
local optimum

− 1����
2p

√
snM

e− (Ai+ai)
2/2s2

n

( )
+ 2lAi = 0, i = 1, . . . , M , (15)

∑M
i=1

A2
i = Dt, (16)

Ai . 0, i = 1, . . . , M , (17)

l . 0, (18)

Ai + ai����
2p

√
s3
nM

e− (Ai+ai)
2/2s2n

( )
+ 2l ≥ 0, i = 1, . . . , M . (19)

There is unfortunately no closed-form expressions for Ai, i = 1, …,
M, from above KKT conditions. However, we can pursue a
numerical solution. With a given l > 0, we can numerically find
roots, say Ai(l), i = 1, …, M, of each of M equations in (15)
using, for example, Newton’s method. Smaller l > 0 will provide a
larger root Ai(l) (with appropriate root selection to satisfy (19) if
multiple roots are found); larger l > 0 will provide a smaller root
Ai(l). Therefore, the optimisation problem can be numerically
solved by searching a lopt > 0 such that the corresponding roots
Ai(l

opt), i = 1, …, M, satisfy (19) and |
∑M

i=1 [Ai(l
opt)]2 −Dt| , 1,

where ɛ is a small positive value serving as stopping threshold.
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The KKT-conditions-based amplitude allocation algorithm is
summarised in Fig. 1.
3.2 Waterfilling-based embedding amplitude allocation

Solving the optimisation problems (12)–(14) by KKT conditions has
very heavy computational complexity. In addition, it also requires
the knowledge of the variance of the external noise s2

n and the
assumption that the external noise is Gaussian such that the
probability of error can be expressed as a Q-function. Realistically,
embedder may have limited knowledge of the potential external
noise coming from image processing attacks and/or physical
transmission etc. All these obstacles limit its application in the
reality. In this section, we attempt to provide a sub-optimal
waterfilling-based embedding amplitude allocation solution which
has very light computational complexity and is independent with
the external noise.

Instead of minimising the average probability of error Pe, we turn
to minimise the maximum probability of error among allM channels/
symbols, max{Pei, i = 1, …, M}, which is the upper bound of Pe,
Pe ≤ max {Pei, i = 1, . . . , M}. Then, the substitute objective
function is

argmin
Ai , i=1, ...,M

max {Pei, i = 1, . . . , M} (20)

s.t.
∑M
i=1

A2
i = Dt, (21)

Ai ≥ 0, i = 1, . . . , M . (22)

We see that Pei is a monotonically decreasing function of (Ai + αi)
regardless the distribution type of the external noise and its
variance. Then, minimising the maximum Pei, i = 1, …, M, is
equivalent to maximising the minimum Ai + αi, i = 1, …, M, and
Fig. 1 KKT-conditions-based amplitude allocation algorithm
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the amplitude allocation problem becomes

argmax
Ai , i=1, ...,M

min {Ai + ai, i = 1, . . . , M} (23)

s.t.
∑M
i=1

A2
i = Dt, (24)

Ai ≥ 0, i = 1, . . . , M . (25)

This well-known max–min fairness optimisation problem can be
easily solved by classic waterfilling method [35]

Ai = (u− ai)
+, i = 1, . . . , M , (26)

where (a)+≜max{a, 0}, u is a constant (water-line) chosen such
that the distortion constraint

∑M
i=1 A

2
i = Dt is met with equality.

The water-line u can be computed by bi-section search method.
The proposed waterfilling adaptive embedding amplitude

allocation algorithm has very light computational complexity and
does not require any prior knowledge of external noise. With
waterfilling-based amplitude allocation algorithm, Ai + αi≥ u,
∀ i = 1, . . . , M , is always true. If the external noise can be
modelled as having Gaussian distribution with zero mean and
variance s2

n, the probability of error of each symbol has an upper
bound Pei≤Q(u/σn), ∀ i = 1, . . . , M , and consequently the
average probability of error has an upper bound Pe ≤ Q(u/sn).
Conversely, for a given probability of error target Pe, to minimise
the host distortion due to embedding, the water-line u should be
set as u = snQ

−1(Pe) and the total distortion with such u can be
calculated by

Dt =
∑M
i=1

A2
i =

∑M
i=1

[(u− ai)
+]

2

or the following proposition whose proof is offered in the Appendix.

Proposition 2: If the αi can be modelled as Laplace distribution with
variance s2

a, then the total distortion induced by waterfilling
amplitude algorithm (26) with a water-line u is

Dt = M × u2 + s2
a −

1

2
s2
r e

−(
�
2

√
u/sa)

( )
(27)

and the MS distortion is

DMS = u2 + s2
a −

1

2
s2
r e

−
�
2

√
u/sa( )

( )
. (28)
3.3 Prioritised waterfilling-based embedding amplitude
allocation

The experimental studies show that the probability of error of SS
embedding with waterfilling algorithm is very close to KKT
solution with a sufficient distortion budget. When the distortion
budget is relatively insufficient, the waterfilling algorithm may
have performance degradation. This is because that the deduction
of the probability of error is, in general, not a linear function of
allocated amplitude. For example, the Q-function which is an error
function for unit-variance Gaussian external noise is shown in
Fig. 2. It can be observed that the error function has a rapid
decreasing rate at interval around zero and a very slow decreasing
rate when input is too large or small. Insufficient distortion budget
will result in a low water-line u. Then those bits with αi close to
zeros can provide higher payback (the reduction on the probability
of error) but are not allocated enough amplitude, while ironically
the bits with low values of αi cost too much distortion resources
141



Fig. 2 Plot of the Q-function
and payback rate is low. Therefore, the distortion budget should be
preferentially allocated to those bits with αi close to zero in order
to potentially achieve larger deduction on the probability of error
with a limited distortion budget. Motivated by this observation, in
this section we propose a prioritised waterfilling-based embedding
amplitude allocation algorithm which can successively allocate
amplitudes to sets of bits based on their priorities.

We first prioritise bits into P + 1 sets based on the values of
corresponding αi as Sj W {i:q j−1 ≤ |ai| , qj, i = 1, . . . , M},
j = 1, …, P, and SP+1 W {i:|ai| ≥ qP}, where 0 = q0 < q1 < · · · <
qP, are priority partition boundaries. Bits in set S1 have the highest
priority to be assigned amplitude and bits in set SP+1 have the
lowest priority. We first allocate amplitudes to bits in set S1 by
following waterfilling algorithm:

Ai =
(u1 − ai)

+, i [ S1,
0, otherwise.

{
(29)

where water-line u1 satisfies
∑

i[S1
A2
i = Dt. If the resulting

water-line u1 is less than a pre-defined water-line threshold u0,
then the distortion budget is insufficient and only bits in set S1 are
allocated amplitudes; otherwise, distortion budget is sufficient to
allocate amplitudes to more bits in lower priority sets and
waterfilling algorithm is re-executed with an extended set S1 < S2.
This procedure is successively executed until the resulting
water-line is less than u0 or all sets are included. This prioritised
waterfilling (P-waterfilling) amplitude allocation algorithm is
summarised in Fig. 3.

The selection of the number of priority partition sets P, the
partition boundaries q1, …, qP, and the water-line threshold u0 is
crucial for prioritised waterfilling algorithm. Larger P can
potentially improve performance but increases complexity. To
Fig. 3 Prioritised waterfilling-based amplitude allocation algorithm
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balance performance and complexity, we suggest to select P = 6,
q1 = (1/2)σα, q2 = σα, q3 = (3/2)σα, q4 = 2σα, q5 = 3σα, q6 = 4σα, and

u0 = (1/2)σα where sa =
�����������������
(1/M )

∑M
i=1 a

2
i

√
is the standard

deviation of αi. Experimental studies show that our proposed
P-waterfilling algorithm with these setting has very close
performance to the KKT solution for any given distortion budget
level.
4 Multi-carrier SS embedding

In this section, we attempt to generalise the signal model in (4) to
cover multi-carrier/multi-message embedding of the form

yi =
∑K
k=1

Ak, ibk, isk + xi + n, i = 1, 2, . . . , M , (30)

where bits bk, i∈ { ± 1}, k = 1, 2, …, K, coming potentially from K
distinct messages, are embedded simultaneously in the
transform-domain host vectors xi with corresponding amplitudes
Ak, i≥ 0, k = 1,…, K, and carriers sk [ RL, ‖sk‖ = 1, k = 1, 2,…, K.

After matched-filtering, the embedded bit {bk, i}, k = 1, …, K, i =
1, …, M, can be detected by

b̂k, i = sgn sTk yi
{ }

= sgn Ak, ibk, i +
∑K

j=1, j=k

Ak, ibk, is
T
k sj + sTk xi + sTk n

{ }
(31)

where the second term is multi-message interference which can be
eliminated if orthogonal carriers/signatures, sTk sj = 0, ∀k = j, are
adopted. The contribution of each individual embedded message
bit bk, i to the composite signal is Ak, ibk, isk and the distortion to
the original host data xi due to the embedded message k alone is

Dk, i =‖ Ak, ibk, isk‖2 = A2
k, i, k = 1, . . . , K, i = 1, . . . , M .

With orthogonal carriers, distortion to the original host data xi by all
K messages is

Di =
∑K
k=1

A2
k, i, i = 1, . . . , M , (32)

and the total distortion of image is

Dt =
∑M
i=1

∑K
k=1

A2
k, i. (33)

Similar to the single-carrier SS embedding discussed in the previous
section, the performance of multi-carrier SS data embedding system
can be further improved if we are allowed to assign different
amplitudes not only across messages but also to symbol bits of
each message. In the following, utilising the findings in the
previous section, we aim to find optimal amplitudes for each
symbol bit bk, i with total distortion constraint. With orthogonal
carriers, the embedded bit detection (31) can be reformulated as

b̂k, i = sgn{Ak, ibk, i + sTk xk, i + sTk n}

= sgn{Ak, ibk, i + rk, i + n}

= sgn{(Ak, i + ak, i)bk, i + n} (34)

where rk, i W sTk xk, i and αk, i ≜ ρk, ibk, i. The probability of error of
bit bk, i is Pek, i =Q(Ak, i + αk, i/σn) if the external noise can be
modelled as white Gaussian and the probability of error of the kth
message is Pek W (1/M )

∑M
i=1 Pek, i, k = 1, …, K. Our objective is

to minimise the average probability of error across all bits of all
IET Image Process., 2016, Vol. 10, Iss. 2, pp. 138–148
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messages with a total distortion constraint

argmin
Ak, i , k=1, ...,K, i=1, ...,M

Pe = 1

MK

∑K
k=1

∑M
i=1

Pek, i (35)

s.t.
∑K
k=1

∑M
i=1

A2
k, i = Dt, (36)

Ak, i ≥ 0, k = 1, . . . , K, i = 1, . . . , M . (37)

This optimisation problem is essentially same as single-carrier case
in (12)–(14) but with K times more amplitudes to be optimised.
The KKT solution has heavy computational complexity and is not
suggested for multi-carrier amplitude optimisation. Therefore, we
suggest solving it by the water-filling method

Ak, i = (u− ak, i)
+ (38)

where (a)+ ≜ max{a, 0}, constant u satisfies
∑K

k=1

∑M
i=1 A

2
k, i = Dt.

Similar to the single-carrier case, the waterfilling algorithm has
performance degradation when the distortion budget is relatively
insufficient. To solve this problem, we extend the prioritised
waterfilling amplitude allocation algorithm for single-carrier SS
embedding in Fig. 3 to the multi-carrier SS embedding. The
detailed algorithm is described in Fig. 4.
5 SS embedding without external noise

Finally, as the last technical development in this paper, we consider
an ideal case in which no external noise is introduced during the
embedding processing and transmission. We focus directly on
multi-carrier SS embedding where single-carrier SS embedding is
a special case with K = 1. Without external noise, the detection of
bit bk, i (34) becomes

b̂k, i = sgn{(Ak, i + ak, i)bk, i}, k = 1, . . . , K, i = 1, . . . , M ,

It indicates that bk, i can be correctly detected if and only if (Ak, i + αk, i)
> 0. Therefore, if αk, i > 0, symbol bit bk, i can be correctly detected
with Ak, i = 0 (i.e. no embedding); if αk, i≤ 0, bk, i needs to be
embedded with an amplitude Ak, i >− αk, i such that bk, i can be
correctly detected. To assure correct detection for all bits, we can
Fig. 4 Prioritised waterfilling-based amplitude allocation algorithm for
multi-carrier embedding
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assign embedding amplitude as

Ak, i =
−ak, i + e, if ak, i ≤ 0,
0, otherwise,

{
(39)

where e is a small positive constant. Let C denote the set of {k, i}
such that αk, i≤ 0, C W{{k, i}:ak, i ≤ 0, k = 1, . . . , K,i = 1,
. . . , M}. SS embedding with the amplitude allocation in (39) will
introduce total distortion

Dt =
∑K
k=1

∑M
i=1

A2
k, i ≃

∑
{k, i}[C

a2
k, i

Conversely, with a sufficient distortion budget Dt .
∑

{k, i}[C a
2
k, i,

we can allocate embedding amplitude as (39) to provide errorless
data embedding.

If the total distortion budget is not large enough to let all
coefficients Ak, i + αk, i, k = 1, …, K, i = 1, …, M, be positive,
that is, Dt ,

∑
{k, i}[C a

2
k, i, then the error of bit detection occurs

and the probability of error for message-k is defined as

Pek =
Nek
M

, k = 1, . . . , K ,

where Nek is the number of error bits of message-k, that is, Nek = |
{(Ak, i + αk, i)≤ 0, i = 1, …, M}|. In an effort to minimise overall
probability of error with a concern of fairness among all K
messages, our objective is to assign the embedding amplitude Ak, i

to minimise the maximum probability of error Pek with a given
Fig. 5 Amplitude allocation for SS embedding without external noise
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Fig. 7 BER versus allowable per-message distortion, (512 × 512 Bridge,
single-carrier SS embedding, L = 63, s2

n = 3 dB, s2
x = 45.90 dB)
total distortion budget Dt

argmin
Ak, i , k=1, ...,K, i=1, ...,M

max {Pek , k = 1, . . . , K} (40)

s.t.
∑K
k=1

∑M
i=1

A2
k, i = Dt, (41)

Ak, i ≥ 0, k = 1, . . . , K, i = 1, . . . , M . (42)

The amplitude allocation algorithm to achieve above goal is
straightforward. Initially, let Ak, i: = 0, ∀ k = 1, . . . , K, i = 1, …,
M. Next, we select one message, say message-k*, which has the
largest number of errors Nek*≥Nek, k = 1, …, K, and then find
the i*th bit in message-k* which has the largest αk*,i, αk*, i*≥ αk*,i,
∀{k∗, i} [ C. In message-k*, bk*,i* needs the least amplitude to let
Ak*,i* + αk*, i* change from negative to positive. We assign
amplitude Ak*,i*: = αk*,i* + ɛ to bk*,i*, the i*th bit of message-k*,
and update set C := C − {k∗, i∗} and Nek*: = Nek*− 1. We
iteratively execute the above procedure until all total distortion is
consumed. The amplitude allocation algorithm for SS embedding
without external noise is summarised in Fig. 5.
6 Experimental studies

In the following, we present extensive experimental results that we
obtained from the implementation of the developed
amplitude-adaptive SS embedding algorithms. To carry out an
experimental study of the developments presented in the previous
sections, we consider the familiar grey-scale 512 × 512 ‘Baboon’
image as a host example. We perform 8 × 8-block DCT
single-carrier embedding (4) over all 63 bins except the dc
coefficient. Hence, our carrier length is L = 63 and we embed
5122/82 = 4096 bits. In our experiment, we use arbitrary carrier
generated by Gaussian distribution. With an 8 × 8-block mean
square error (MSE) distortion DMS, the peak signal-to-noise ratio
(PSNR) of the image due to embedding can be calculated by
PSNR W 20 log10 (255)− 10 log10 (DMS/64). Another metric that
reflects the relationship between host and embedding distortion is
the block document-to-watermark power ratio (DWR) defined as
DWR W 10 log10 s

2
x − 10 log10 (DMS) where s2

xWTr{Rx} is the
(total) host block variance. The value of s2

x depends on the nature
of each host image and is provided in each experiment that we run
(see figure captions) to facilitate translation by the reader between
MSE and DWR if desired. For the sake of generality, in our
studies we also incorporate white Gaussian noise of variance
s2
n = 3 dB.
Fig. 6 BER versus allowable per-message distortion, (512 × 512 Baboon,
single-carrier SS embedding, L = 63, s2

n = 3 dB, s2
x = 46.49 dB)
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We evaluate the performance of six different embedding schemes:
(i) SS embedding (1) with equal amplitudes, (ii) ISS embedding
scheme (2) proposed in [25], (iii) CAISS embedding scheme (3)
proposed in [30], (iv) the proposed amplitude-adaptive SS
embedding with by KKT solution, (v) proposed
amplitude-adaptive SS embedding with waterfilling solution, and
(vi) the proposed amplitude-adaptive SS embedding with
prioritised waterfilling (P-waterfilling) solution.

Fig. 6 shows the recovery BER created by the embedded data for
above six embedding schemes as a function of the MS distortion
DMS per-block [With block MS distortion DMS, the PSNR of the
image due to embedding can be calculated by
PSNR = 20 log10 (255)− 10 log10 (DMS/64). Total distortion is
Dt = MDMS.]. It is demonstrated that the use of proposed
symbol-by-symbol adaptive amplitude allocation significantly
improves the BER performance over conventional equal-amplitude
SS embedding and also outperforms recently developed ISS and
CAISS embedding schemes. Particularly, if the BER requirement
is 10−5, then the proposed P-waterfilling algorithm can reduce
more than 2 dB distortion compared with ISS and CAISS; if the
distortion budget is 30 dB, then the P-waterfilling algorithm can
reduce BER from 10−3 to 10−5 (i.e. two orders of magnitude) over
ISS and CAISS. Compared with the benchmark KKT method, we
can also observe that the sub-optimal P-waterfilling solution has
very close BER performance to the optimal KKT solution for all
Fig. 8 BER versus allowable per-message distortion, (average findings
over more than 100 images [36], 8 × 8-block partition, single-carrier SS
embedding, L = 63, s2

n = 3 dB)
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Fig. 10 Embedding distortion on the image

a Original Baboon image
b Data-embedded image by our proposed P-waterfilling embedding algorithm
c Data-embedded image by ISS [25]
d Data-embedded image by CAISS [30]

Fig. 9 Theoretical MS distortion in (28) and the empirical MS distortion
under different water-lines u. The experiment is carried out with a data set
of 1300 images [36]

Fig. 11 Difference between Baboon cover image and data-embedded images AB

a Data-embedded image by our proposed P-waterfilling embedding algorithm
b Data-embedded image by ISS [25]
c Data-embedded image by CAISS [30]
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distortion range. Therefore, P-waterfilling amplitude allocation
algorithm is always suggested due to its simplicity and satisfactory
performance for all distortion levels. In Fig. 7, we repeat the same
experiment for grey-scale 512 × 512 ‘Bridge’ image and the same
conclusion can be drawn. To address the need for experimental
verification of highest credibility, now we examine the average
performance of the proposed amplitude-adaptive SS embedding
algorithm over an image database. We randomly select more than
100 images from image data set [36] which have great variety
(e.g. outdoor/indoor, daylight/night, natural/man-made). Recovery
performance plots are given in Fig. 8. Similar conclusion can be
drawn as in previous individual image host experimentations. It is
worth pointing out that each image may have quite different
log-scale BER curve due to the large variation of image contents.
When we attempt to show the average BER over all images, the
performance improvement looks not very significant as the
individual image experiment.

To validate Proposition 2, in Fig. 9 we show both the theoretical
MS distortion computed by Proposition 2 (28) and the empirical MS
distortion under different water-line u. The experiment is carried out
with a data set of 1300 images [36] and the average distortions are
obtained and illustrated. We can observe from Fig. 9 that the
theoretical MS distortion computed by Proposition 2 match the
empirical MS distortion. This result validates the accuracy of
Proposition 2.

To demonstrate the embedding distortion on the image, in Fig. 10
we show (a) original Baboon image, (b) data-embedded image by
our proposed P-waterfilling embedding algorithm, (c)
data-embedded image by ISS [25], and (d) data-embedded image
by CAISS [30]. The MS distortion is fixed at DMS = 30 dB for all
three embedding algorithms. We cannot observe notable distortion
on all three data-embedded images. To further illustrate the
distribution of embedding distortion on the image, we evaluate the
difference between cover image and data-embedded images
Idiff = ABS(I c − I s) where I c and I s are the cover image and
data-embedded image, respectively, and ABS( · ) denotes taking
the absolute values. To achieve better visualisation, we amplify the
difference Idiff five times and show Idiff × 5 in Fig. 11. All three
embedding algorithms have similar distortion patterns. In Figs. 12
and 13, we repeat the same experiment on the Bridge image and
the same conclusion can be drawn.

Next, we consider the problem of multi-carrier SS embedding.
We still use the ‘Baboon’ and ‘Bridge’ images as the host and
wish to hide K = 16 data messages of length 4096 bits each.
With the total distortion Dt to the host image, the MS
per-message per-block distortion is DMS = Dt/M/K. As before,
for the sake of generality, we add to the host white Gaussian
external noise of variance 3 dB. We study three different
multi-carrier embedding schemes: (i) conventional SS embedding
equal amplitudes, (ii) proposed amplitude-adaptive SS embedding
with waterfilling solution, and (iii) the proposed
amplitude-adaptive SS embedding with P-waterfilling amplitude
allocation. Compared with the experiments in Figs. 6 and 7,
S( Ic − I s)× 5
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Fig. 12 Experiment on the Bridge image

a Original bridge image
b Data-embedded image by our proposed P-waterfilling embedding algorithm
c Data-embedded image by ISS [25]
d Data-embedded image by CAISS [30]

Fig. 14 BER versus allowable per-message per-block distortion,
(512 × 512 Baboon, multi-carrier SS embedding, L = 63, K = 16,
s2
n = 3 dB, s2

x = 46.49 dB)

Fig. 15 BER versus allowable per-message per-block distortion,
(512 × 512 Bridge, multi-carrier SS embedding, L = 63, K = 16, s2

n = 3 dB,
s2
x = 45.90 dB)
amplitude-adaptive SS embedding with the KKT solution is
excluded due to extremely high computational complexity. ISS
and CAISS embedding schemes, which were originally
developed for single-carrier SS embedding, are not considered in
these experiments. Figs. 14 and 15 show BERs of three
multi-carrier SS embedding schemes versus distortion
per-message per-block. Similar results as single-carrier case, the
proposed amplitude-adaptive SS embedding can significantly
improve the BER performance of SS embedding. In Fig. 16, we
show the average BER of multi-carrier embedding over multiple
images and similar conclusion can be drawn.

Finally, we turn to examine the performance of SS embedding
when no external noise is introduced. We carry out the same
experiment studies for the multi-carrier SS embedding but no
external noise is added to the host. The results of Fig. 17 illustrate
that the proposed adaptive amplitude allocation optimisation can
always provide significant performance improvement for various
images.
Fig. 13 Difference between Bridge cover image and data-embedded images ABS( Ic − I s)× 5

a Data-embedded image by our proposed P-waterfilling embedding algorithm
b Data-embedded image by ISS [25]
c Data-embedded image by CAISS [30]
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Fig. 16 BER versus allowable per-message distortion, (average findings
over more than 100 images [36], 8 × 8-block partition, multiple-carrier SS
embedding, L = 63, s2

n = 3 dB)

Fig. 17 BER versus allowable per-message distortion, noiseless embedding
case, (512 × 512 Boat, multi-carrier SS embedding, L = 63, K = 15)
7 Conclusions

We considered the problem of embedding data in a digital media
host via SS embedding in an arbitrary transform domain. We
presented a novel amplitude-adaptive SS embedding scheme in
which each symbol bit is assigned an embedding amplitude based
on its known interference from the host. A computationally
expensive KKT-conditions-based amplitude allocation algorithm
and two light-complexity water-filling-based amplitude allocation
algorithms were developed to adaptively assign amplitude to each
symbol bit with any given total distortion budget. We showed that
the use of symbol-by-symbol adaptive amplitude allocation
dramatically further improves the performance of additive SS
embedding in terms of the probability of error over conventional
equal-amplitude allocation and also outperforms recently
developed ISS and CAISS embedding schemes. Particularly, the
proposed P-waterfilling amplitude allocation algorithm is always
suggested due to its simplicity and satisfactory performance.

To take these findings one step further, we extended
our single-carrier/single-message to multi-carrier/multi-message
embedding and developed amplitude optimisation algorithm which
can provide, once again, improvements in the probability of error
as well as assure the fairness among all embedded messages.
Finally, we investigated amplitude allocation for an ideal case in
IET Image Process., 2016, Vol. 10, Iss. 2, pp. 138–148
& The Institution of Engineering and Technology 2016
which no external noise is introduced during the embedding
processing and transmission and proposed an iterative amplitude
assignment algorithm to fairly minimise the number of errors of
each message with total distortion budget.

While the most common squared Euclidean distortion is used as
metric in this paper, we should be aware that there are many more
reasonable metrics measuring the embedding distortion according
to the human visual system (HVS) such as the
just-notable-distortion [37, 38]. Owing to the limitation of the
space, we did not consider HVS in this paper but will concentrate
our focus on it in our future works. In this paper, without loss of
generality, in both algorithm development and experiment, we
added Gaussian external noise to emulate the image processing
attacks (e.g. compression, scaling, rotation, cropping, filtering
etc.). Clearly, the real image processing attacks behave quite
differently. We will also investigate the effects of various attacks
and testify the robustness of the proposed algorithms in our future
studies.
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10 Appendix

10.1 Proof of KKT conditions (15)–(19)

We combine the function to be optimised with the constraints and
form the Lagrangian

L = 1

M

∑M
i=1

Q
Ai + ai

sn

( )
+ l

∑M
i=1

A2
i −Dt

( )
−

∑M
i=1

miAi

where l, μi≥ 0, i = 1, …, M, are the KKT multipliers. The KKT
necessary conditions of the optimisation problems (12)–(14)
consist of the conditions ∂L/∂Ai = 0, i = 1, …, M, the
complementary slackness conditions, and the primal and dual
constraints [35]

− 1����
2p

√
snM

e− (Ai+ai)
2/2s2n

( )
+ 2lAi − mi = 0, i = 1, . . . , M ,

(43)

miAi = 0, i = 1, . . . , M , (44)

∑M
i=1

A2
i = Dt, (45)

Ai ≥ 0, i = 1, . . . , M , (46)

mi ≥ 0, i = 1, . . . , M . (47)
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To simultaneously satisfy conditions (43), (44), and (47), it can be
found that μi = 0, Ai > 0, ∀ i = 1, . . . , M , and then the KKT
necessary conditions become

− 1����
2p

√
snM

e− (Ai+ai)
2/2s2n

( )
+ 2lAi = 0, i = 1, . . . , M , (48)

∑M
i=1

A2
i = Dt, (49)

Ai . 0, i = 1, . . . , M . (50)

Since the first normal term in (48) is always negative, the second
term 2lAi has to be positive and consequently l > 0 with
constraint Ai > 0, i = 1, …, M.

The objective function (12) is not convex [The Q-function Q(a)
is not convex because its second derivative Q′′(a) =
1/

����
2p

√( )
a e(a

2/2) , 0 when a < 0.]. In addition, Ai, i = 1, …, M,
and l satisfy above KKT necessary conditions are not sufficient
for local optimality. To provide strict local minimisers, we also
need following second-order sufficient conditions

∂2L
∂2Ai

= Ai + ai����
2p

√
s3
nM

e− (Ai+ai)
2/2s2n

( )
+ 2l ≥ 0, i = 1, . . . , M .

(51)
10.2 Proof of Proposition 2

The αi can be modelled as Laplace distribution with variance s2
a, that

is

P(x) = 1��
2

√
sa

exp −
��
2

√

sa

|x|
( )

With water-line u, the average distortion of each host is

DMS =
∫u
−1

1��
2

√
sa

exp −
��
2

√

sa

|x|
( )

(u− x)2 dx (52)

=
∫0
−1

1��
2

√
sa

exp

��
2

√

sa

x

( )
(u− x)2 dx

+
∫u
0

1��
2

√
sa

exp −
��
2

√

sa

x

( )
(u− x)2 dx (53)

We calculate the two integrations separately as follows

∫0
−1

1��
2

√
sa

exp

��
2

√

sa

x

( )
(u− x)2 dx = u2

2
+ usa��

2
√ + s2

a

2
(54)

∫u
0

1��
2

√
sa

exp −
��
2

√

sa

x

( )
(u− x)2 dx

= u2

2
− usa��

2
√ + s2

a

2
− 1

2
s2
r e

−(
�
2

√
u/sa) (55)

Then the MS distortion is DMS = u2 + s2
a − (1/2)s2

r e
−(

�
2

√
u/sa)

and the total distortion is Dt = M ×DMS = M×
u2 + s2

a − (1/2)s2
r e

−(
�
2

√
u/sa)

( )
.
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