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Abstract
Camera model identification, which aims to identify the source camera model of the query
images, has been well studied in the laboratory environment. Most existing methods regard
it as a classification problem and rely on well-designed features that characterize the dif-
ferences between various camera models. In these methods, however, the accuracy of
identification results would suffer from the process of image recompression. The infor-
mation loss reduces the discriminative ability of the designed identification features and
results in a serious accuracy loss. To remedy this shortcoming, we investigate the handi-
cap for accurate source identification when the query image is recompressed and creatively
propose a new method Discriminative Feature Projection (DFP) to solve this problem. The
proposed method learns a discriminative feature projection that projects the designed identi-
fication features into a new feature representation invariant to recompression by minimizing
the divergence between recompressed and uncompressed images. We also incorporate two
constraints that the discrepancy of different images sources should be large and the latent
geometric relations of images neighbors should be preserved into our method to reinforce
the discriminative ability. Moreover, we conduct extensive experiments over the public
Dresden Image Database. Compared with several state-of-the-art methods on camera model
identification, the experiment results verify that DFP can achieve significant accuracy
promotion when identifying the recompressed images.
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1 Introduction

Nowadays, digital images are everywhere in our daily life. These images are taken by digital
cameras, camcorders and smart-phones and are utilized in many fields such as commer-
cial advertisement, news media, military and even in a criminal investigation as evidence.
However, the recent development of image tampering technology makes it easy to tamper
an image without a visible trace left. There would be an extremely terrible social impact if
tampered images are utilized in journalism or judicial evidence. As a result, it is essential to
identify the authenticity and the source of the images.

In this circumstance, the technology of source camera identification develops rapidly
[44, 45]. As a challenging branch of multimedia forensics, source camera identification
aims to determine the sources of digital images to support forensics and more, specifically,
to determine which camera a given image was taken by [43]. Generally, source camera
identification can be divided into two groups: active source camera identification and blind
source camera identification. Blind source camera identification which only uses the query
image itself is more popular because it does not need to embed the source information, i.e.
digital watermarking, into the original image in advance. This work focuses on blind source
camera identification which has been well studied in the laboratory environment over the
last decade, and a significant number of outstanding methods have been proposed.

Regarding the blind source camera identification, most existing works could be divided
into two categories: camera individual identification and camera model identification. We
briefly introduce these two technologies in the following subsections and the detailed
description can be found in [24, 41, 43].

1.1 Camera individual identification

The objective of camera individual identification is to find out which specific imaging
device the query image is taken by. Most researches are based on the matching of unique
fingerprints extracted from a digital image namely sensor pattern noise (SPN). The internal
defects, due to the shortage of raw material or the limitation of manufacturing techniques,
are considered as an inevitability on camera lens for each imaging device. The defects would
leave indelible mark in all images acquired by the sensor, and the mark is stable and unique
of camera individual, so it could be used as the fingerprint to identify the camera individ-
ual. Also, SPN could be used for detection techniques such as forgery detection [9], hue
modification [17], etc.

In general, SPN based camera individual identification mainly consists of three main
stages: SPN extraction, reference SPN estimation and SPN matching. The process of SPN
based methods is illustrated in Fig. 1.

Obviously, for SPN based methods, the extraction of SPN is a crucial step, more accurate
extraction of SPN generally means higher identification accuracy. Unfortunately, SPN can
easily be contaminated by image scene details, i.e. scene edges and textures [27] and this
would directly cause misidentification. This problem has already attracted the attention of
researchers and many attempts [7, 14, 18, 21, 25–27, 29, 32, 35, 39, 46, 57] have been
made to extract purer SPN. Besides, the storage overhead of SPN and high computation
complexity of SPN matching are also challenging problems for SPN based methods. Many
efforts [1, 2, 19, 30, 52] have been made to lower the storage overhead and enable a more
efficient process of camera individual identification.

When identifying the source of images, the image content is useless and will significantly
reduce the purity of SPN. Many researchers regard this as the breakthrough point and tend
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Fig. 1 The process of the SPN based camera individual identification

to choose images without many scene details, i.e. blue sky, to generate reference SPN in
order to increase the reliability of reference SPN. That’s the limitation of SPN based meth-
ods because the artificial selection of images samples is often not realistic in the practical
forensic scenario.

1.2 Cameramodel identification

Different from individual identification and active forensics [6, 23], camera model identi-
fication aims to find the source camera model of the query image rather than the specific
camera individual. To achieve this goal, design and extraction of distinctive characteristics
(features) covering differences between different camera models while occurring very sim-
ilar between devices of the same model, is considered as the priority task in camera model
identification. Many sophisticated processing steps are carried out inside cameras during
the imaging process, i.e. demosaicing, white balancing and JPEG compression. For a given
camera model, these processing steps are exactly the same, but it is a rare case that dif-
ferent camera models use the very same set of algorithms and parameters [38]. Given the
statistical traces left in images by the mentioned image processing steps, it is possible to
derive the reliable identification of camera model. Thus, most researches take advantage of
the well-designed statistical features and machine learning algorithms to identify camera
model.

The flowchart of feature-based camera model identification also consists of three steps:
feature extraction, classifier training and identification of query image. The features are
specifically designed for capturing the distinctness of different camera models such as the
ensemble of demosaicing features proposed in [8] and local binary pattern features proposed
in [58], before being fed into support vector machine (SVM) or ensemble classifiers to train
a classifier to identify the source model of the query image.

So far, feature-based methods have achieved satisfactory identification performance in a
laboratory environment. An average identification accuracy of 99.2% over 12 camera mod-
els is reported in [8]. However, there is still one challenging problem that needs to be settled
urgently, the robustness against double JPEG compression, and this is beyond the scope of
existing methods. In real-world forensic applications, images usually have undergone JPEG
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recompression when being shared through instant messaging software or uploaded to social
networks. After the query image is recompressed, the feature extracted from the query image
is no longer suitable for the model built on uncompressed images, and the identification
result becomes no longer reliable either.

1.3 Goals and objectives

In our previous work [5], joint first and second-order statistics matching (JSM) algorithm
was proposed to reduce the recompression divergence between training samples and query
images caused by image recompression1. Although JSM has made great progress com-
pared to previous works, it mainly focuses on reducing the recompression divergence and
fails to fully exploit the class information, resulting in the loss of discriminative informa-
tion. To solve this problem, we propose an iterative method namely discriminative feature
projection (DFP) in this paper. The basic idea of our method is to learn a discriminative
feature projection that projects the designed identification features into a low-dimensional
and discriminative subspace that is invariant to recompression. Intuitively, there should
be no divergence between the features of recompressed and original images any more
in the learned representation. More importantly, it should be reinforced that the discrim-
inative information between classes which is beneficial to the identification task. We
also add a local geometric structure-preserving constraint when learning the new feature
representation because samples lying close in the original feature space have large prob-
ability belonging to the same class and this should be preserved in the learned feature
representation.

That is to say, not only do we seek a new feature presentation in minimizing the
discrepancy between original images and recompressed images, but also incorporate the
discriminative information from labeled data and the local geometric structure constraint
into our method to enhance the classification performance. The latter makes our method
more discriminative and effective when identifying the source camera model of recom-
pressed images. We will demonstrate the benefits of our method both theoretically and
experimentally in following sections.

Hence, our main contributions are summarized as follows:

1. Practical-oriented research focuses on the source camera model identification of
recompressed images.

2. Find out a suitable measurement Maximum Mean Discrepancy to measure and reduce
the divergence between recompressed images and original images.

3. Learn a discriminative feature projection to simultaneously reduce the side effect
caused by recompression and reinforce the identification ability.

The rest of the paper is organized as the following. Section 2 describes the representative
researches related to our work. Section 3 describes our proposed method and the corre-
sponding optimization procedure in detail. Comprehensive experiments are carried out and
comparisons of related works are presented in Section 4 to verify the superiority of the
proposed method. Finally we draw our conclusion in Section 5.

1To prevent any potential confusion, we name the JPEG images directly exported from cameras the original
images. The original images are all JPEG images and if they undergo another JPEG compression, we name
them recompressed images.
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2 Related work

In this section, we briefly introduce feature-based camera model identification methods and
related feature projection based methods.

2.1 Feature-based cameramodel identification

Considering that the color filter array (CFA) and demosaicing algorithms may vary from
different camera manufacturers and even different camera models with the same manu-
facturer, Bayram et al. [3] proposed to identify the source camera based on traces of the
proprietary interpolation algorithms. Ho et al. [16] proposed to use the variance of color dif-
ference planes to measure the inter-channel correlation for source camera identification and
achieved a promising result. Based on [16], Hu et al. [20] developed an improved algorithm
using inter-channel demosaicing traces for camera model identification. The shape and tex-
ture features were fed into Stumps AdaBoost classifier and experimental results showed its
superiority.

Xu et al. [58] proposed to use uniform gray-scale invariant local binary patterns (LBP) to
capture the characteristics or artifacts generated by image processing algorithms which are
block-wise implemented inside cameras, such as demosaicing, filtering and JPEG compres-
sion. Similarly, [59] also investigated the discriminative ability of local phase quantization
(LPQ) to distinguish imaging devices. The combined texture features of LBP and LPQ were
fed into a multi-class SVM classifier, and reached better detection accuracy than [58].

In addition, kinds of research aimed at using high dimensional features (more than 1000
dimensions) to classify the source camera model. Chen et al. [8] built a rich model of the
demosaicing algorithm to identify the source camera model. The full feature dimension is
1372 and was fed into a multi-class ensemble classifier. The average identification accuracy
over 12 camera models is 99.2%, as reported in their paper. Tuama et al. [47] extracted high
order statistics features with 10932 dimensions consisting of co-occurrences matrix fea-
tures, traces of color dependencies features and conditional probability statistics features.
Recently, Roy et al. [42] proposed to use Discrete Cosine Transform Residual (DCTR)
features combined with principal component analysis (PCA) and ensemble classifier for
camera source identification. They proved DCTR features can capture the compression arti-
facts imposed by the camera model-dependent quantization tables and the average accuracy
reported in their paper is 96.5%. Note that the camera models used in their experiments
are all from different brands, it looks more like camera brand identification rather than
camera model identification. The image feature vectors consist of structure element corre-
lation (SEC), gradient value correlation (GVC) and gradient direction correlation (GDC),
have also been proposed and evaluated in related applications, image retrieval for instance
[48–51, 53–56].

In summary, there are kinds of research studying camera model identification, but exist-
ing methods can not handle the problem of double JPEG compression [3, 4, 8, 10–12, 16, 20,
22, 37, 38, 42, 47, 58, 59]. Actually, these statical feature-based methods suffer from image
recompression severely. Our work aims to solve this problem by learning a discriminative
feature projection that projects the training and test features into a low dimensional sub-
space to suppress the influence of image recompression while enhancing the discriminative
ability.
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2.2 Feature projection basedmethods

Identifying the source camera model of recompressed images with only original images as
training data is a typical situation of domain shift problems. Domain shift exists in various
applications, such as steganalysis and text classification [28, 33, 34, 36, 40, 60], and fea-
ture projection has been demonstrated significant successes in dealing with this problem.
In these papers, the training and test sets are named as source and target domain respec-
tively. The goal is to reduce the domain shift by projecting the original features into a new
shared feature space with a small domain shift. We will briefly introduce several related
representative feature projection based methods.

In [40], transfer component analysis (TCA) was proposed to learn a common feature
transformation for source and target domain where the marginal distribution difference is
minimized in projected feature space. Based on [40], Long et al. [33] took conditional dis-
tribution into consideration, and put forward joint distribution adaptation (JDA) to reduce
both the marginal and conditional distribution differences between domains. Inspired by
these studies, Li et al. [28] proposed generalized transfer component analysis (GTCA) to
solve the mismatched problem in steganalysis. Using an intermediate domain before TCA,
GTCA can learn more discriminate representations for mismatched steganalysis. In [36],
Luo et al. also introduced a repulsive force term to drag the sub-domains with different
labels far away from each other to increase the discriminative power of the adapted domain.
They named it as close yet discriminative domain adaptation (CDDA).

A recent feature projection based research studying source camera model identification
of recompressed images is [61], Zhang et al. manually designed a feature transformation to
minimize the distribution deviation between training and test set. The experimental results
reported in their paper are quite encouraging. Note that the feature projection in [61] is
manually set based on test data and the projection is only applied on training features, which
is very different from our proposed method where the feature projection is automatically
learned based on the well-designed objective function and both the training and test data
are projected into the discriminative feature subspace to reduce the divergence caused by
recompression.

3 Proposedmethod

The framework of camera model identification through DFP is mainly composed of two
parts: discriminative feature projection matrix learning and classification through SVM
under the new feature representation, as shown in Fig. 2. To improve the identification
accuracy under recompression condition, we first learn the feature projection matrix by
simultaneously minimizing the divergence which is caused by recompression, enhancing
the discriminative information and constraining the local structure relations as illustrated
in Fig. 2a. Once the projection matrix is available, we can get the new representation of
training data through the learned feature projection matrix, and the features under this new
representation are not only insensitive to image recompression but also more discriminative.
Thus, the identification model could be trained under the new representation by SVM, and
given a query image, we could project the identification feature of the query image using
the same feature projection matrix and get a more reliable identification result compared
with the non-projected feature as illustrated in Fig. 2b. As discussed above, step 1 is the key
of DFP. In the following subsections, we will explain in detail the original intention to each
item involved in the final objective function when learning the feature projection.
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Fig. 2 The framework of camera model identification through DFP

3.1 Data properties preserving with dimensionality reduction

Suppose there are ns labeled training samples (training set, original images) Xs =
{xs1 , xs2 , ..., xsns

}, xsi ∈ Rd , i = 1, ..., ns , where d is the dimension of original features.
Each column in Xs corresponds to one sample. In addition, Ys = {ys1 , ys2 , ..., ysns

} is
the set of labels of Xs and ysi ∈ {1, ..., C}, where C is the number of classes in train-
ing set. Similarly, there are nt validation samples (validation set, recompressed images)
Xt = {xt1 , ..., xtnt

}, xtj ∈ Rd , j = 1, ..., nt . Yt is the corresponding label set of Xt .
We aim to learn a discriminative feature projection matrix P that projects the original

features Xs,Xt into a latent feature space which is insensitive to image recompression but
more discriminative. Though projected into a new feature space, the data properties should
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be preserved and the reconstruction error should be minimized. Methods like PCA to find a
latent feature space with dimensionality reduction have shown their effectiveness. Here we
maximize the data variance as performed by PCA to preserve the data properties. Denote
X = {xs1 , ..., xsns

, xt1 , ..xtnt
} ∈ Rd×n the input data matrix, where n = ns + nt , XHXT is

the covariance matrix of X, where H = I − 1
n
1 is the centering matrix, I ∈ Rn×n is the

identity matrix, and 1 is the n × n matrix of ones. Hence, the variance maximization of the
projected data could be achieved while projecting the original data into the latent feature
space PTX as

max
P

tr(PTXHXTP) (1)

where tr(•) denotes the trace of a matrix, P ∈ Rd×k is the projection matrix, and k is the
dimension of the learned low dimensional subspace where k < d .

3.2 Divergenceminimization by distributionmatching

Only preserving the data properties is far from enough to identify the source camera model
under recompression condition, because PCA could not explicitly reduce the distribution
divergence caused by recompression between training set(original images) and validation
set(recompressed images). Here we aim to reduce the distribution shift in the learned latent
feature space by explicitly minimizing the distribution difference through a proper distance
measurement. We adopt a non-parametric criteria Maximum Mean Discrepancy (MMD) as
the distance measurement of distribution distance between two sets. MMD is introduced
by Gretton et al. to measure the distribution difference in [15]. Using the k-dimensional
embeddings mentioned in (1), the MMD distance could be formulated as

∥
∥
∥
∥
∥
∥

1
ns

∑

xsi
∈Xs

PTxsi − 1
nt

∑

xtj
∈Xt

PTxtj

∥
∥
∥
∥
∥
∥

2

= tr(PTXM0XTP)

(2)

where M0 is the MMD matrix and is computed as

(M0)ij =

⎧

⎪⎨

⎪⎩

1
nsns

, xi , xj ∈ Xs
1

nt nt
, xi , xj ∈ Xt

−1
nsnt

, otherwise
(3)

Since (2) measures the distribution difference of training set and validation set, we then
achieve our goal of reducing the distribution difference by minimizing

min
P

tr(PTXM0XTP) (4)

So the distribution shift is reduced under the new feature representation Z = PTX when (4)
is minimized.

Considering there are C classes in training set, the distribution shift could be further
reduced when the empirical distances over the same classes between training and validation
set are minimized. An unavoidable problem is that we have no labels in validation set (The
labels in validation set is only used for evaluating the performance of the learning of feature
projection matrix, and can not directly used here). So we turn to utilize the pseudo labels of
validation samples y′

tj
, which can be obtained by applying a base classifier such as nearest

neighbor classifier (NN) or support vector machine (SVM) trained over the training data to
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the unlabeled validation data. Here we use nearest neighbor classifier as the base classifier
to predict pseudo labels in our experiment since it does not require tuning cross-validation
parameters. Similar to (2), with pseudo labels in validation set and true labels in training
set, the class-conditional distribution shift in projected feature space can be computed as

∥
∥
∥
∥
∥
∥
∥

1
n

(c)
s

∑

xsi
∈X(c)

s

PTxsi − 1
n

(c)
t

∑

xtj
∈X(c)

t

PTxtj

∥
∥
∥
∥
∥
∥
∥

2

= tr(PTXMcXTP)

(5)

where X(c)
s = {xsi : xsi ∈ Xs ∧ ysi = c} and X(c)

t = {xtj : xtj ∈ Xt ∧ y′
tj

= c} represent
the subset of samples belonging to class c in the training and validation set respectively. ysi

and y′
tj

is the true label of xi and pseudo label of xj correspondingly. n
(c)
s and n

(c)
t is the

number of samples in X(c)
s and X(c)

t . Mc is the conditional MMD matrix for class c

(Mc)i,j =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
n

(c)
s n

(c)
s

, xi , xj ∈ X(c)
s

1
n

(c)
t n

(c)
t

, xi , xj ∈ X(c)
t

−1
n

(c)
s n

(c)
t

,

{

xi ∈ X(c)
s , xj ∈ X(c)

t

xi ∈ X(c)
t , xj ∈ X(c)

s

(6)

To further reduce the distribution shift caused by recompression, the class-conditional dis-
tribution shift computed by (5) for all the C classes should be minimized. So (4) and (5)
could be incorporated as

min
P

tr(PTX
C

∑

c=0

McXTP) (7)

By minimizing the above equation such that (1) is maximized, the distribution between
training and validation set are drawn closer under the new representation Z = PTX. And the
identification of source camera model for recompressed images in this new feature space
becomes more reliable because the divergence caused by recompression has been decreased
effectively through the feature projection.

3.3 Discriminative information enhancement

The distribution divergence has been reduced in the new feature representation by distri-
bution matching, but the class information has not been fully exploited while learning the
feature projection. Since the true labels of training samples are available, it is beneficial to
encode the discriminative class information in the resulting feature representation. Here we
aim to learn the projection that not only minimizes the distribution divergence between two
sets, but also encourages the new representation to be discriminative and yields good classi-
fication performance. To reach this goal, the distance between the training samples in each
class and the class mean should be minimized, which encourages the samples belonging to
the same class to be compact by

min
P

tr(PTSwP) (8)
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where Sw is the within-class scatter matrix of training set whose labels are available and is
defined as

Sw =
C

∑

c=1

∑

xsi
∈X(c)

s

(

xsi − μ(c)
) (

xsi − μ(c)
)T

(9)

where μ(c) is the mean of samples in training set of class c.
Minimizing (8) when learning the feature projection, the samples in the projected feature

representation would become closer if they belong to the same source camera. Encoding
the discriminative class information is a quite important improvement. With this improve-
ment, the discriminative information is enhanced and the learned representation is more
suitable for classification. In another word, enhancing the discriminative class information
could lead to an obvious improvement of identification accuracy. And this will be verified
thoroughly by the experiments.

3.4 Local structure constraint

With distribution matching and discriminative information enhancement, the samples have
been projected into a new feature representation which has less distribution divergence but
more discriminative ability. However, the local neighbor relations in sample level have not
been taken into consideration. Intuitively the samples who are neighbors in the original
feature space should also stay close to each other in the new feature representation.

The local structure construction method has been widely used to preserve the local geom-
etry structure by constructing the relations of neighbors [31]. For our identification task of
recompressed images, we incorporate the local structure constraint with class information
while learning the feature projection. Specifically, neighbor samples only from the same
class should keep close to each other and this will effectively enhance the similarities among
the neighbor samples belonging to the same class.

With the true labels of training set and pseudo labels of validation set, the local structure
constraint with class information is defined as

min
P

∑

i j

∥
∥PTxi − PTxj

∥
∥

2
Wij

= min
P

tr(PTX (D − W)XTP)

= min
P

tr(PTXGXTP)

(10)

where Wij = ||xi − xj ||2 is the weight of the relation of two samples if they have the same
class labels and among the nearest neighbors of the other. If two samples are not the nearest
neighbors or have different class labels, we set Wij = 0 by default. D is a diagonal matrix
where Dii = ∑

i

Wij , and G = D − W is the Laplacian matrix.

Both (8) and (10) utilize the class information to enhance the discriminative ability of
the learned feature projection, but they are essentially different. In (8), the labels of training
set are all correct and we make use of all samples in training set to compute the within-class
scatter matrix Sw . But in (10) the pseudo labels of validation set which may be incorrect are
involved, so we only constrain the local relations of samples if and only if they share the
same label and are nearest neighbors.
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3.5 Overall objective function and optimization

According to the above analysis, we aim to learn the feature projection by maximizing (1)
while minimizing (7), (8) and (10). So we incorporate the above four equations to formulate
our method as

min
P

tr

(

PT
(

X
C∑

c=0
McXT + α

(

Sw + XGXT
)
)

P + βtr
(

PTP
)
)

tr
(

PTXHXTP
) (11)

where α is the trade-off parameter to balance the importance of distribution matching,
discriminative information enhancement and local structure constraint. A constraint that
tr(PTP) is small is further imposed to control the scale of P to guarantee the optimization
problem to be well defined and β is the corresponding regularization parameter. So finding
the optimal feature projection matrix P is transmuted into minimizing (11).

According to the generalized Rayleigh quotient, minimizing the numerator of (11) such
that the denominator of (11) is maximized is equivalent to minimizing the numerator of
(11) such that the denominator of (11) is fixed. So the constrained objective function is
reformulated as:

min
P

tr

(

PT
(

X
C∑

c=0
McXT + α(Sw + XGXT) + βI

)

P
)

s.t . PTXHXTP = I

(12)

To optimize (12), we solve the optimization problem according to the constrained optimiza-
tion theory. The Lagrange function of (12) is

L = tr

(

PT
(

X
C∑

c=0
McXT + α(Sw + XGXT) + βI

)

P
)

+ tr
((

I − PTXHXTP
)

Φ
)

(13)

where Φ = diag (φ1, ..., φk) ∈ Rk×k are the Lagrange multipliers. By setting ∂L
∂P = 0, we

thus get a generalized eigendecomposition problem

(

X
C

∑

c=0

McXT + α(Sw + XGXT) + βI

)

P = XHXTPΦ. (14)

As a consequence, the optimal projection matrix P can be learned by solving (14) for the
k smallest eigenvectors of (XHXT)−1(X

∑C
c=0 McXT + α(Sw + XGXT) + βI). Once the

projection matrix P is available, we can project the original data into the latent feature
space PTXs and PTXt with distribution shift reduced, discriminative information enhanced
and local structure constrained. Then traditional machine learning algorithms such as SVM
can be applied to the projected data to identify the source camera model of recompressed
images. Also, it is worth noticing that the optimization procedure is iterated 10 times and
the pseudo labels in validation set are iteratively refined after each iteration in order to learn
a better and stable feature projection.
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4 Experiments

In this section, we conduct extensive experiments to evaluate the proposed method on source
camera model identification of recompressed images. The detailed experimental setup and
experimental results can be found in the following subsections.

4.1 Experimental setup

4.1.1 Database

We evaluate our proposed method on a widely used public JPEG image database ‘Dres-
den Image Database’[13]. Some examples used in the experiments are shown in Fig. 3.
The image database is specifically built for the purpose of development and benchmarking
of camera-based digital forensic techniques [13], whose images are captured by different
cameras indoor/outdoor with various camera settings.

As the detailed information shown in Table 1, we choose 16 camera models from well-
known camera brands in the Dresden Image Database to form the dataset used in our
experiments. For each camera model, we have 180 training samples and 180 test samples.
What’s more, in order to eliminate the influence of different individuals of the same cam-
era model, the samples in training and test set of the same camera model are from different
individuals. That is to say, the identification model is built on one camera individual of each
camera model, and we test our method on another individual of the same camera model.
This test setting is more practical in that we aim to detect the source model of the given

Fig. 3 Sample images used in the experiments
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Table 1 The camera models used
in the experiments Camera model Abbr. Format Size

anon Ixus70 C1 JPEG 3072×2304

Casio EX-Z150 C2 JPEG 3264×2448

FujiFilm FinePixJ50 F1 JPEG 3264×2448

Kodak M1063 K1 JPEG 3664×2748

Nikon CoolPixS710 N1 JPEG 4352×3264

Nikon D70 N2 JPEG 3008×2000

Nikon D200 N3 JPEG 3872×2592

Olympus mju 1050SW O1 JPEG 3648×2736

Panasonic DMC-FZ50 P1 JPEG 3648×2736

Praktica DCZ5.9 P2 JPEG 2560×1920

Rollei RCP-7325XS R1 JPEG 3072×2304

Samsung L74wide S1 JPEG 3072×2304

Samsung NV15 S2 JPEG 3648×2736

Sony DSC-H50 SD1 JPEG 3456×2592

Sony DSC-T77 SD2 JPEG 3648×2736

Sony DSC-W170 SD3 JPEG 3648×2736

images and also more difficult compared with the situation that the samples in training and
test set are all from the same individual of each camera model.

4.1.2 Baselines

Our proposed method DFP is compared with several representative source camera model
identification methods and several related feature projection based methods in the experi-
ments. The representative forensic methods are: three SVM based methods with color filter
array features (CFA) [3], local binary pattern features (LBP) [58], and texture features (TF)
[59], two ensemble classifiers based methods with ensemble of demosaicing features (EDF)
[8] and discrete cosine transform residue features (DCTR) [42]. The related feature projec-
tion based methods are: transfer component analysis (TCA) [40], joint distribution matching
(JDA) [33], generalized transfer component analysis (GTCA) [28], close yet discrimina-
tive domain adaptation (CDDA) [36], cross-class alignment (CCA) [61] and joint first and
second order statistics matching (JSM) [5]. Moreover, two subversions of DFP namely
DFPv1 (DFP without discriminative information enhancement) and DFPv2 (DFP without
local structure constraint) are also compared in the experiments in order to demonstrate
the effectiveness of discriminative information enhancement and local structure constraint
separately.

4.1.3 Implementation details

In the experiments, we use the LBP features proposed in [58] as the original features for
feature projection based methods to identify the source camera model. As shown in Table 2,
the bold font indicates the highest identification accuracies when training samples are not
recompressed. In the left half of Table 2, the identification accuracies are obtained through
traditional forensics methods. Compared with other methods, LBP features have the highest
basic identification accuracies, which is the reason why we choose it as the original features
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for feature projection. The LBP features are extracted in the 1024×1024 subimage cropped
from the upper left corner of each image, because the image size of the 16 camera models
are different as shown in Table 1. Other compared methods also have the same setting
mentioned above in order to have a fair comparison.

We conduct two experiments with different settings to evaluate the performance of our
proposed method in recompression condition. For Experiment I, there are only original
images in our training set but recompressed images in test set, and you can find the detailed
description and experimental results in the next subsection. We also conduct Experiment II
with mixed training set consisting of images recompressed with various quality factors to
prove that our proposed method is suitable for more complicated forensic scenario. In this
paper, the recompression of the original image is implemented by MATLAB function.

Note that there are 3 parameters involved in the objective function (12), we tune
them through cross validation by empirically searching the parameter space α, β ∈
{0.001, 0.01, 0.1, 1} for the optimal parameter setting. For TCA, GTCA, JDA, CDDA and
JSM, we also tune their parameters using the same way with DFP. As for subspace dimen-
sion k, we empirically fix k = 50 for all the experiments because it have little influence of
the experimental results.

4.2 Results and discussion

In this section, we conduct extensive experiments under different situations as mentioned
above to evaluate the performance of our proposed method. The classification accuracies of
DFP and other compared methods are shown in Tables 2–5. The highest accuracy of each
group of results is highlighted in bold.

4.2.1 Experiment I

In this experiment, in order to get the recompressed test images, we firstly compress the
images in test set using standard quantization tables with quality factors from 70 to 100
with an interval of 5. We name the original training and test set as SOri and TOri, and the
corresponding recompressed test sets are named as T70, T75, T80, T85, T90, T95 and T100.

For each test case, we randomly select 30% samples of each class in SOri and then
compress them using the same quantization table of the test set to form the corresponding
validation set. The regularization parameters α = 0.01 and β = 0.001 are tuned by cross
validation using the validation set. Taking T70 as an example, we compress the selected
images with quality factor of 70 as the validation set, and learn the feature projection matrix
between the remaining samples in SOri and validation set using DFP method. Then we eval-
uate the performance on the new feature representation using SVM and the experimental
results are listed in Table 2. Note that this validation set construction strategy is unpracti-
cal because we have no priori knowledge about the test set in real forensic scenario. This
experiment just aims to prove the effectiveness of DFP which can obviously eliminate the
distribution divergence caused by recompression and yields good performance even there is
a huge gap between training and test set.

From Table 2, we notice that traditional forensic methods performs very well when test
set is TOri, but poorly when recompressed especially when the quality factor is quite low.
The identification accuracy of LBP is 96.25% for SOri→TOri while EDF achieves a better
result of 97.33%. When the test images are recompressed, there is a remarkable down-
ward tendency of identification accuracy for all traditional forensic methods. The lower the
recompression quality factor, the worse the classification performance. And the decreasing
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rate of EDF is much more obvious compared with LBP as illustrated in Table 2. Though
performing worse when test samples are recompressed, LBP [58] is still the best traditional
forensic method in terms of average identification accuracy. LBP depicts an average accu-
racy of 43.38% which is much higher than other traditional forensic methods, and that’s
why we choose LBP features as the original features for feature projection based methods.

As for feature projection based methods, their identification accuracies are higher than
LBP in almost all the test situations except for SOri→TOri. And it is obvious that our pro-
posed method is the best among them. DFP achieves much better performance than the
compared methods (both traditional forensic methods and feature projection based meth-
ods) in each mismatched case when test samples are recompressed. Taking SOri→T95 as an
example, DFP shows an identification accuracy of 90.83%, gaining a significant improve-
ment compared with 62.95% of LBP, 63.78% of DCTR, 85.94% of JDA, 83.33% of CDDA,
87.33% of JSM. When training set and test set are matched (case SOri→TOri), the result of
DFP is also slightly higher than LBP which means our DFP method is still effective when
there is no clear divergence between training and test set, and that is reasonable because the
discriminative information in the training set is enhanced while the local structure is con-
strained. When the quality factor of test images decreases, the identification accuracy of
all the methods has declined due to the growing divergence between training and test set,
but DFP is still the best among the methods. DFP depicts an overall average accuracy of
68.18%, with an improvement of 24.8% compared with LBP and 0.27% compared with the
best baseline method JSM.

Note that DFPv1 and DFPv2 are two subversions of DFP without discriminative infor-
mation enhancement and local structure constraint separately. They both perform better than
compared baseline feature projection based methods, which provides a good demonstration
for the effectiveness of the proposed two components separately. Moreover, our proposed
method DFP simultaneously enhances the discriminative information and constrains the
local relations while minimizing the recompression divergence and leads to better perfor-
mance than DFPv1 and DFPv2. And that is why DFP is more powerful in identifying the
source camera model of recompressed images.

4.2.2 Experiment II

As mentioned in Experiment I, we always know nothing about the compression history of
the query image in prior. So we can not construct the validation set according to the com-
pression quality factor of test set as we did in Experiment I. In practical forensic scenario,
the model trained on SOri in Experiment I is not suitable for complicated forensic demand,
especially when we have several different compression quality factors in test set. To solve
this problem, an intuitive solution is to retrain a classifier using a mixed training set con-
sisting of images recompressed with different quality factors. So we also compress SOri
using standard quantization tables with quality factors from 70 to 100 with an interval of 5.
Thus, we get several sets named S70, S75, S80, S85, S90, S95 and S100. And we mix up
these compressed training sets with SOri to get a new mixed training set named SMixed.
The corresponding mixed test set is named as TMixed.

Then, we rebuild the identification model using SMixed as training set and report the
experimental results in Tables 3–5. Similar to Experiment I, we should firstly learn the
discriminative feature projection matrix for feature projection based methods. So we ran-
domly choose 30% samples of each class in SMixed as a validation set to learn the feature
projection matrix P. Since the mixed training set SMixed consists of several kinds of recom-
pressed images, the selected validation set also consists various recompressed images. This
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validation construction strategy no longer relies on the prior information of the test samples
and is more practical in real forensic scenario. With the validation set, the regularization
parameters α and β are tuned by cross validation as mentioned in implementation details,
and we get α = 0.01, β = 0.001 in this experiment. Once the feature projection matrix is
available, we can project the original features into the new feature representation and train
the identification model by SVM. Thus, given a query image, we should firstly project the
feature of the test image using the same feature projection matrix and then get the identi-
fication result using the model learned above. It is worth noting that the feature projection
matrix various test sets used when testing is exactly the same, we need only to learn the
feature projection matrix once using the mixed training set and validation set and this can
handle various recompressed situations.

The identification accuracies of each method using the mixed training set SMixed when
test images are recompressed with aforementioned quality factors are shown in Table 3.
For the sake of clarity, we list the results of different recompression cases separately. Each
row shows the identification results of different methods on the same test case while each
column shows the results of one method on various test cases. As shown in Table 3, all the
traditional forensic methods perform barely satisfactory, LBP achieves an average accuracy
of 89.06% and DCTR achieves a better result of 89.25% while LPQ, CFA and EDF performs
worse with average accuracy lower than 89%. The identification accuracy of all the methods
has declined with the decrease of the quality factor of test images, but the decreasing degree
of identification accuracy is smaller compared with Experiment I. For SMixed→T70, the
identification accuracy of LBP is 81.25% while DCTR achieves 84.38%. And our DFP
method achieves 87.60%with an improvement of 6.35% and 3.22% compared with LBP
and DCTR.

For feature projection based methods, TCA, JDA, JSM and DFP all performs bet-
ter than LBP, especially our proposed method DFP. DFP performs better than the basic
LBP method on every test case with an improvement of 1.8%-6.35%. In general, DFP
depicts an average identification accuracy of 92.63% which is 3.57% higher than the basic
LBP method and 2.26% higher than the best result of baseline method JSM. The promo-
tion illustrates that divergence minimizing, discriminative information enhancement and
local structure constraint help a lot in identifying the source camera when the test images
are recompressed and this is a strong demonstration of the effectiveness of the proposed
method.

To intuitively display the identification results of each camera model, we list the confu-
sion matrix of the average result of DFP in Table 4. For the sake of simplicity, the accuracy
lower than 0.5% is replaced with ‘-’. The average accuracy is 92.63% for 16 camera models
which is quite encouraging for the identification of recompressed images with 8 differ-
ent test conditions. From the confusion matrix, we can see that the highest identification
accuracy is 98.68% recorded by Rollei RCP-7325XS while the least identification accu-
racy is 70.35% recorded by Sony DSC-W170. One might notice that the accuracy of two
Sony camera models (Sony DSC-H50 and Sony DSC-W170) is significantly lower than
the average accuracy. And these two models are always misclassified into the other model.
Similarly, we also find the same phenomenon in the results of all other compared methods,
which means it is not a specific problem just happened in DFP. The reason for this inter-
esting phenomenon is probably that these two models may share the same post-processing
algorithms. And it is difficult to distinguish the images from these two models of the same
brand especially when they share strong similarity of features. For other camera models, the
identification accuracies are mostly higher than 93%.
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As mentioned before, the practical forensic demand is quite complicated. It is a quite
common situation that the compression quality factors of query images may even not
included in the mixed training set and this situation needs to be taken into consideration in
the experiments. To evaluate the performance of our proposed method under this situation,
we also compress the original test images TOri with quality factor 72, 77, 82, 87, 92 and
97, and report the identification results in Table 5 using the same model learned above. As
one might expect, the identification accuracies of all the 11 methods have decreased com-
pared with the results in Table 3, but DFP is still the best compared with other methods. The
average identification accuracy of DFP has decreased to 89.99% from 92.63% while LBP
has decreased to 85.83% from 89.06%. Under this situation, the promotion compared with
the basic LBP method is 4.16% while the promotion compared with JSM is 2.65%. Though
the average accuracy has declined, the average promotion compared with LBP and JSM has
increased, which proves the effectiveness of our proposed method under this complicated
situation.

4.2.3 Computational cost analysis

For a fair comparison, we analyze quantitatively the computational cost by the example of
SOri→T95 in Experiment I. The details of experimental platform are as follows: Windows
10 64-bit, Intel(R) Core(TM) i7-6700 CPU @3.40GHz, 64G RAM, MATLAB R2014a.
The results of computational cost (time consuming) are shown in Table 6. Costs are mainly
divided into two aspects: the cost of learning the feature projection and the cost of training
the classifier. The cost of learning the feature projection is much higher than other feature
projection based methods, which is the drawback and also the price for identification accu-
racy improvement of the proposed method. Moreover, since the feature projection is learned
in a principled dimensionality reduction procedure, the dimension of identification features
in the new feature space is reduced to k, which is 50 as mentioned in above section, and that
is why the cost of training classifier of the proposed method is much lower than the basic
LBP method. And EDF is a quite outstanding method whose performance is good while the
computational cost is low. Generally, the computational cost of the proposed method is a bit
high but within an acceptable range, it is reasonable to improve the identification accuracy
as the cost of time as long as the computational cost is acceptable.

4.2.4 Generalization performance analysis

In order to illustrate the generalization performance of the method proposed in this paper,
we conducted an extended experiment on the VISION dataset. The VISION dataset contains
images and videos from 35 phones from 11 different brands, which includes 11,732 orig-
inal images, 7,565 high-quality and low-quality images from Facebook and 7,565 images
from WhatsApp for a total of 34,427 images. As a training set, we randomly selected 10
types of images from VISION, 200 images for each type. From Table 7, we notice that
traditional forensic LBP methods performs poorly when recompressed especially when the
quality factor is quite low. However, the DFP method proposed in this article has a certain
improvement in accuracy compared to the original method before transfer learning. In total,
for high-quality images, this method does not improve much, and for low-quality images,
there is a more obvious improvement.
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Table 7 Identification accuracy (%) on the VISION dataset

Train→Test LBP DFPv1 DFPv2 DFP

SMixed→T100 79.50 79.94 80.00 80.00

SMixed→T95 79.33 80.00 79.83 79.94

SMixed→T90 78.67 79.89 79.83 79.89

SMixed→T85 79.50 79.94 79.72 79.94

SMixed→T80 76.11 79.17 78.50 79.44

SMixed→T75 71.00 77.28 76.67 77.39

SMixed→T70 68.61 75.33 74.78 75.94

Ave. 76.10 78.79 78.48 78.93

5 Conclusion

In this paper, we propose a method discriminative feature projection to identify the source
camera model of recompressed images. In the proposed method, the projection matrix
which projects the original features into a new feature representation that is invariant
to recompression is firstly learned by simultaneously minimizing the divergence caused
by recompression, enhancing the discriminative information and constraining the local
structure relations. Then the training and test data are projected into the learned feature
representation and the identification is conducted under the new feature space using SVM.
The cooperation of divergence minimization, discriminative information enhancement and
local structure constraint makes the identification results under the learned feature rep-
resentation more reliable. The experimental results demonstrate the effectiveness of the
proposed method and show that the performance of DFP is superior to existing methods
when identifying the source camera model of recompressed images.
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