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 a b s t r a c t

With the rapid development of video platforms, digital video has become one of the core mediums for information 
dissemination. However, the extensive circulation of video content has also given rise to various social issues, 
including extortion, fraud, and misinformation. In this context, Video Source Camera Identification (VSCI), as a 
key technology in video forensics, plays an irreplaceable role in combating the spread of false information and 
assisting in crime identification. Traditional Source Camera Identification (SCI) methods primarily rely on various 
trace features generated during the capture process. However, with the popularization and advancement of image 
processing applications, extracting these feature traces has become increasingly challenging. Furthermore, due 
to storage and transmission limitations, video data often requires multiple compression processes. This multiple 
compression not only destroys the original features of the video but also introduces complex noise interference, 
making video source identification significantly more challenging than SCI for images. While Convolutional 
Neural Networks (CNNs) excel at local feature extraction, their ability to capture global information is limited, 
which constrains their identification performance in complex scenarios. We propose a dual-branch hierarchical 
feature fusion network structure to address the issue. The network extracts local and global features using CNN 
and Transformer, respectively, and achieves efficient feature fusion through a hierarchical feature fusion module, 
thereby comprehensively enhancing identification performance. To verify the feasibility and effectiveness of 
the proposed method, we conducted experiments using VISION and QUFVD dataset. The experimental results 
demonstrate excellent identification performance of this method.

1.  Introduction

With the rise of video platforms and the widespread adoption of 
smartphones, users can share content online ubiquitously. However, this 
convenience has introduced societal issues like extortion, fraud, and mis-
information. Digital images/videos have become increasingly important 
as crucial evidence and historical records, making their authenticity ver-
ification a core issue requiring urgent attention. Source Camera Identi-
fication (SCI) technology, as a crucial means for verifying digital con-
tent authenticity, can precisely match videos with recording devices and 
track device models involved in cases, thereby effectively curbing illegal 
activities such as unauthorized recording and copyright infringement, 
and maintaining social order and public safety.

Although numerous methods have achieved significant results in 
source camera identification for image (Berdich et al., 2023; Rana et al., 
2023; Sychandran & Shreelekshmi, 2024; Wang et al., 2024c), with 

∗ Corresponding author.
 E-mail addresses: bowang@dlut.edu.cn (B. Wang), 0703chi@mail.dlut.edu.cn (J. Chi), 15668854383@163.com (Z. Wu), 1292202003@qq.com (H. Liu), 
wwang@nlpr.ia.ac.cn (W. Wang).

the rapid rise of short-video platforms, the demand for forensic anal-
ysis of illegal videos are growing increasing. Although there is some 
overlap between the video generation process and the image gener-
ation process, their technical challenges are more severe. Videos are 
essentially sequential data composed of continuous frame images that 
must undergo compression processing due to storage and transmission 
limitations. Moreover, internet platforms typically perform secondary 
compression on uploaded videos, and this multiple compression process 
makes the noise interference in videos more complex, resulting in video 
source identification being significantly more challenging than image 
source identification, as shown in Fig. 1. Therefore, developing effi-
cient multimedia forensic technologies to address various video source 
identification needs has become crucial in solving illegal video-related
issues.

In recent years, Convolutional Neural Networks (CNNs) have made 
significant progress in the task of Video Source Camera Identification 
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\begin {equation}\label {eq1} \begin {aligned} & g_{i}=f^{1\times 1}(W-MSA(LN(G_{i-1})))+G_{i-1}\\ & G_{i}=f^{1\times 1}(SW-MSA(LN(g_i)))+g_i \end {aligned}\end {equation}
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\begin {equation}\label {eq4} L(X)=\sigma (X_{[0]})\odot \psi (\sigma (I(X)))\odot X\end {equation}
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\begin {equation}\label {eq5} \begin {aligned} & \hat {G}_{i}=\mathrm {CA}(G_{i})\otimes G_{i} \\ & \hat {L}_{i}=\mathrm {SA}(\mathrm {GSAU}(L_{i}))\otimes L_{i} \\ & \tilde {F}_{i}=\mathrm {Avgpool}(f^{1\times 1}(F_{i-1})) \\ & \hat {F}_{i}=f^{1\times 1}(\mathrm {Concat}(G_i,L_i,\tilde {F}_i]) \\ & F_{i}=\mathrm {IRMLP}(\mathrm {LN}(\mathrm {Concat}[\hat {G}_i,\hat {L}_i,\hat {F}_i]))+\tilde {F}_i \end {aligned}\end {equation}
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\begin {equation}\label {eq6} \mathrm {GSAU}(x)=\mathrm {LN}(f_{DW}(x)\otimes scale))+x\end {equation}
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\begin {equation}\label {eq7} \begin {aligned} & \mathrm {CA}(x)=\sigma (\mathrm {MLP}(\mathrm {AvgPool}(x))+\mathrm {MLP}(\mathrm {MaxPool}(x)))\\ & \mathrm {SA}(x)=\sigma (f^{7\times 7}(\mathrm {Concat}[\mathrm {AvgPool}(x),\mathrm {MaxPool}(x)])) \end {aligned}\end {equation}
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\begin {equation}\label {eq9} CrossEntropyLoss=-\frac {1}{N}\sum _{n=1}^N\sum _{i=1}^ky_i^t\log y_i^p\end {equation}


$\leq {0.5\,\%}$

https://orcid.org/0009-0000-7071-6416
https://orcid.org/0009-0008-3782-9572
https://orcid.org/0009-0006-6845-4940
https://orcid.org/0000-0002-8598-0831
mailto:bowang@dlut.edu.cn
mailto:0703chi@mail.dlut.edu.cn
mailto:15668854383@163.com
mailto:1292202003@qq.com
mailto:wwang@nlpr.ia.ac.cn
https://doi.org/10.1016/j.eswa.2025.129475
https://doi.org/10.1016/j.eswa.2025.129475


B. Wang et al.

Fig. 1. Digital content generation process within and beyond digital cameras (Bennabhaktula et al., 2022).

(VSCI) (Anmol & Sitara, 2024; Bennabhaktula et al., 2022; Manisha 
et al., 2023). Although CNNs perform well in local feature extraction, 
their ability to capture global context is limited. Meanwhile, the Trans-
former demonstrated unique advantages in modeling long-range depen-
dencies with its self-attention mechanism (Vaswani et al., 2017), and 
showed great potential in the field of VSCI (Elharrouss et al., 2025; Lu 
et al., 2024).

However, the existing methods often face two key limitations: (1) 
The traditional dual-branch architecture usually adopts simple feature 
concatenation or addition methods to fuse global and local features, fail-
ing to fully consider the hierarchical correlation of multi-scale features; 
(2) Transformer and CNNs have inherent limitations in local/global fea-
ture extraction respectively, which restricts their further application in 
SCI tasks. To address these issues, we propose a Dual-branch Hierar-
chical Feature Fusion Network (DHFFNet) structure. This network ar-
chitecture innovatively extracts global and local features respectively 
using Swin-T network and Multi-Stage CNN, and achieves adaptive fu-
sion of global and local features through the Feature Fusion Module 
(FFM). The trained model is then used to classify the frames, predicting 
the source device of each frame, and compiling the frames belonging 
to a single video through majority voting to predict the source camera 
device of each video. The experimental results show that this method 
has achieved superior performance compared to the current SOTA meth-
ods on datasets such as VISION and QUFVD, providing a new technical 
approach for VSCI.

In this paper, we introduce the Dual-branch Hierarchical Feature Fu-
sion Network (DHFFNet) method to address the challenges of VSCI. The 
main contributions of this paper can be summarized as follows:

• We propose a dual-branch hierarchical feature fusion network that 
effectively captures both local and global features at different scales. 
By leveraging the complementary strengths of local and global fea-
ture extraction, it addresses the limitations of traditional methods.

• The model integrates Gated Spatial Attention Unit (GSAU), Channel 
Attention (CA), Spatial Attention (SA), and Local Importance-based 
Attention (LIA), achieving adaptive fusion of global and local fea-
tures. This attention mechanism ensures that the model can dynam-
ically focus on the most relevant features for identification.

• The proposed DHFFNet model has achieved promising results on 
both VISION and QUFVD datasets, demonstrating its identification 
capabilities.

The paper is organized as follows. Section 2 provides a review of 
existing methods for VSCI. Section 3 introduces the proposed network 
architecture. In Section 4, we demonstrate the nice performance of the 
proposed method for VSCI using datasets. Finally, we conclude the paper 
with Section 5, with acronyms listed in Table 1.

Table 1 
Table of expansion and their abbreviations.
 Expansion  Abbreviation
 Video Source Camera Identification  VSCI
 Electric Network Frequency  ENF
 Convolutional Neural Networks  CNNs
 Source Camera Identification  SCI
 Swin Transformer  Swin-T
 Gated Spatial Attention Unit  GSAU
 Channel Attention  CA
 Spatial Attention  SA
 Local Importance-based Attention  LIA
 Photo Response Non-Uniformity  PRNU
 Inverted Residual Multi-layer Perceptron  IRMLP
 Charge Coupled Device  CCD
 Window Multi-head Self-Attention  W-MSA

2.  Related work

In this section, we will discuss various methods for video source 
camera identification and their advantages and disadvantages. Over the 
years, researchers and digital forensics experts have invested consider-
able time in designing VSCI methods from different perspectives. We 
will analyze in depth the strengths and limitations of three categories of 
VSCI methods, including methods based on metadata, Photo Response 
Non-Uniformity (PRNU) and deep learning.

2.1.  Identification methods based on metadata

Metadata-based methods perform SCI by analyzing metadata infor-
mation. For instance, Ngharamike et al. (2023) proposed a technique 
leveraging Electric Network Frequency (ENF) to perform VSCI contain-
ing ENF. Similarly, Yang et al. (2020) utilized video container struc-
tures to trace video sources. Although metadata-based approaches have 
shown notable success, the widespread adoption of video editing soft-
ware has made metadata manipulation increasingly accessible, signifi-
cantly compromising their performances in Video Source Camera Iden-
tification (VSCI) (Li et al., 2024).

2.2.  Identification methods based on PRNU

Early research primarily combined camera imaging characteristics 
with traditional algorithms, focusing on the inherent properties of the 
cameras themselves. By analyzing and modeling these characteristics, 
researchers could perform source camera identification by analyzing 
and comparing their feature values. A series of source camera identifi-
cation methods were derived from these characteristics. Kurosawa et al. 
(1999) discovered Photo Response Non-Uniformity (PRNU) in images, 
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which is a unique characteristic inherent to cameras. The presence of 
PRNU originates from dark current non-uniformity in Charge-Coupled 
Device (CCD) sensors, generating fixed pattern noise. As a unique cam-
era fingerprint, PRNU ensures higher identification accuracy and relia-
bility, thereby providing robust evidence for SCI.

Yang et al. (2021) proposed a PRNU based on the video forensic 
method that considers video I-frames to improve processing time and ac-
curacy. Lawgaly et al. (2022) proposed a weighted average-based video 
PRNU estimation method that extracts noise residuals from each video. 
The estimated noise residuals are then input into a weighted averaging 
method, optimizing PRNU to significantly improve identification per-
formance.

However, further compression during video transmission destroys 
the PRNU noise components in the video and introduces more complex 
interference noise, making it difficult to accurately extract PRNU fea-
tures. Therefore, Video Source Camera Identification (VSCI) presents 
greater challenges than image-based SCI. To address the various illegal 
video issues emerging on internet platforms, it is essential to develop 
VSCI technologies capable of effectively identifying the sources of di-
verse online videos.

2.3.  Identification methods based on deep learning

Methods based on deep learning have shown significant performance 
improvements in classification tasks recently. In the field of SCI, meth-
ods based on deep learning have also demonstrated great potential in 
VSCI. Li et al. (2024) proposed a multi-level fingerprint learning frame-
work to address the issue of declining accuracy in video integrity and 
source analysis identification.They integrated video encoding attributes, 
extracting multilevel features from both decoded video key frames and 
reference frames. Wang et al. (2024c) utilized integral images to op-
timize smooth block selection algorithms based on pixel variance, re-
moving interference from semantic video information, and designed a 
residual neural network with fusion constraint layers to adaptively learn 
the characteristics of the video source for SCI. Akbari et al. (2024) used 
their proposed six-stream network to extract low-level and high-level 

features through the network, and performed camera model identifica-
tion by fusing features using forward and backward functions based on 
joint sparse representation. Unlike unimodal methods, Tsingalis et al. 
(2024) and Dal Cortivo et al. (2021) combined both audio and visual 
information from videos for VSCI. However, they did not consider that 
some videos cannot have audio extracted, which limits video identifica-
tion, therefore necessitating the exploration of more universally appli-
cable methods for VSCI.

It is necessary to develop deep learning methods that primarily learn 
video visual information containing inherent camera characteristics, 
making them unaffected by the inability to extract audio from videos, 
thereby enhancing capabilities for video source camera identification.

3.  Proposed method

In this section, we provide an overview of the Dual-branch Hierar-
chical Feature Fusion Network (DHFFNet) and present a detailed de-
scription of its various components.The overview of the model module 
and its current implementation status are shown in Table 2.

3.1.  Overview of the Dual-branch Hierarchical Feature Fusion Network 
(DHFFNet)

The architecture of DHFFNet is shown in Fig. 2. The model effec-
tively employs dual-branch structure to extract global and local features, 
and achieves fusion of multi-level features through the Feature Fusion 
Module (FFM), thereby obtaining accurate video frame classification re-
sults. Finally, the model achieves VSCI through majority voting.

3.2.  Swin-T network

The Swin Transformer (Swin-T) network (Liu et al., 2021) is an ad-
vanced architecture based Vision Transformer. The model employs a 
hierarchical processing strategy, where the input image is partitioned 
into multiple non-overlapping patches that undergo progressive trans-
formation across different stages, as illustrated in Fig. 3.

Table 2 
Summary of model modules and their implementation status.
 Module  Status  Notes
 Swin-T  Reused (Liu et al., 2021)  Extract global features
 Mutli-stage-CNN  Modified from (Liu et al., 2021)  Extract local features
 FFM  Modified from (Huo et al., 2024)  Fusion global and local features
 GSAU  Reused (Wang et al., 2024a)  Extract spatial information more effectively
 LIA  Reused (Wang et al., 2024b)  Suppress irrelevant noise
 CA&SA  Reused (Dai et al., 2017; Hu et al., 2018)  Focus on global or spatial features selectively

Fig. 2. The overall structure of the Dual-branch Hierarchical Feature Fusion Network (DHFFNet).
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Fig. 3. General architecture of Swin-T network.

Fig. 4. Swin-T Block architecture.

As depicted in Fig. 4, the model incorporates a Window Multi-head 
Self-Attention (W-MSA) mechanism within Swin-T Block at each stage 
to effectively capture global semantic information (Huo et al., 2024). 
The computational process of this mechanism is formally expressed in 
Eq. (1):

𝑔𝑖 = 𝑓 1×1(𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝐺𝑖−1))) + 𝐺𝑖−1
𝐺𝑖 = 𝑓 1×1(𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑔𝑖))) + 𝑔𝑖

(1)

where 𝑔𝑖 and 𝐺𝑖 denote the output features of W-MSA and Shift W-MSA 
(Wang et al., 2023) operations within the global feature block, respec-
tively. The transformation 𝑓 1×1 represents a convolution operation with 
a kernel size of 1 × 1, and 𝐿𝑁 signifies the layer normalization opera-
tion. The global features are subsequently put into the FFM for further 
processing.

This architectural design not only significantly reduces computa-
tional complexity, but also enhances the accuracy and stability of the 
model (Lu et al., 2024). However, Transformer has inherent limitations 
in local feature extraction, which restricts its further application in SCI 
tasks. Therefore, more effective methods for identification need to be 
proposed.

3.3.  Multi-Stage Convolutional Neural Network

The Multi-Stage CNN specializes in local feature extraction. As 
shown in Fig. 5, while architecturally similar to Swin-T, it uniquely in-
tegrates a Local Importance Attention (LIA) mechanism in the first stage 
to enhance relevant features and suppress noise. The process employs a 
3 × 3 depth-wise separable convolution (Fig. 6) for efficient local feature 
extraction, followed by a linear layer enabling cross-channel commu-
nication. These processed features are then fed into the feature fusion 
module, as formulated in Eq. (2):

𝐿𝑖 = 𝑓 1×1(𝐿𝑁(𝑓 𝑑𝑒𝑝𝑡ℎ3×3(𝐿𝑖−1)))) + 𝐿𝑖−1 (2)

where 𝐿𝑖 represents the output of Convolutional Neural Network block, 
𝑓 𝑑𝑒𝑝𝑡ℎ3×3 is a depth-wise convolution operation with kernel size 3 × 3.

Fig. 5. General architecture of Multi-Stage Convolutional Neural Network.

Fig. 6. Convolutional Neural Network block architecture.

3.4.  Local Importance-based Attention (LIA)

Prior research typically computes importance maps through sub-
networks or matrix operations. Inspired by the local importance ac-
quisition through regional softmax in literature (Gao et al., 2019; Ster-
giou et al., 2021), Wang et al. (2024b) proposed an attention mech-
anism based on local importance calculation. Specifically, the impor-
tance value of pixel X within the surrounding region R is calculated 
using Eq. (3):

𝐼(𝑋)|𝑋 =
∑

𝑘∈𝑅

∑

𝑖∈𝑅𝑘

𝑒𝑋𝑖
∑

𝑗∈𝑅𝑘 𝑒
𝑋𝑗

⋅𝑤𝑘 (3)

where 𝐼(𝑋)|𝑋 represents the local importance of 𝑋. 𝑅 represents the 
neighborhood region centered on 𝑋. 𝑤 is a learnable weight used to op-
timize the calculated importance values. As illustrated in Fig. 7, the im-
plementation employs stacked SoftPool and 3 × 3 convolutional layers, 
complemented by stride and squeeze convolutions to enhance compu-
tational efficiency and receptive field coverage.

Gating mechanism (Dauphin et al., 2017; Wang et al., 2024a) is used 
for feature refinement of local importance 𝐿(𝑋). To simplify the design, 
the first channel of the input features is directly selected as the gating 
signal. Finally, the local importance attention mechanism 𝐿(𝑋) can be 
summarized as Eq. (4):
𝐿(𝑋) = 𝜎(𝑋[0])⊙ 𝜓(𝜎(𝐼(𝑋)))⊙𝑋 (4)

where, 𝜎(.) and 𝜓(.) represent the Sigmoid activation function and bilin-
ear interpolation.

LIA is an attention mechanism, but its applicability in VSCI tasks has 
not yet been verified. In our task, LIA can adaptively enhance useful 
features and suppress irrelevant noise through calculating local impor-
tance and combining with attention mechanisms, thereby enabling the 
model to better capture image details and structural information.

3.5.  Feature Fusion Module (FFM)

Inspired by Huo et al. (2024), an adaptive feature fusion module 
(including Channel Attention (CA), Spatial Attention (SA), and Inverted 
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Fig. 7. The architecture of Local Importance-based Attention (LIA).

Residual Multi-layer Perceptron (IRMLP) was employed to fusion global 
and local features adaptively. Additionally, we introduced Gated Spatial 
Attention Unit (GSAU) to reduce computational complexity and inte-
grate spatial information. The overall structure of FFM is illustrated in 
Fig. 8. Here, 𝐺𝑖 represents the global features extracted at the current 
stage, 𝐿𝑖 represents the local features extracted at the current stage, 𝐹𝑖−1
represents the fused features generated by HHB from the previous stage, 
and 𝐹𝑖 represents the fused features generated by HHB at the current 
stage. The feature fusion operation is shown in Eq. (5):
𝐺̂𝑖 = CA(𝐺𝑖)⊗𝐺𝑖
𝐿̂𝑖 = SA(GSAU(𝐿𝑖))⊗𝐿𝑖
𝐹𝑖 = Avgpool(𝑓 1×1(𝐹𝑖−1))

𝐹𝑖 = 𝑓 1×1(Concat(𝐺𝑖, 𝐿𝑖, 𝐹𝑖])

𝐹𝑖 = IRMLP(LN(Concat[𝐺̂𝑖, 𝐿̂𝑖, 𝐹𝑖])) + 𝐹𝑖

(5)

where ⊗ represents element-wise multiplication, 𝐺̂𝑖 is generated by CA, 
and 𝐿̂𝑖 is generated by GSAU and SA. 𝐹𝑖 is the output of the fusion 
of global features, local features and features from the previous stage. 
Finally, 𝐹𝑖, 𝐺̂𝑖, and 𝐿̂𝑖 are concatenated together, and features are gen-
erated through IRMLP.

3.6.  Gated Spatial Attention Unit (GSAU)

In Transformer architectures, the Feed-Forward Network (FFN) plays 
a crucial role as a key component for enhancing feature representation 
capabilities. However, traditional Multilayer Perceptron (MLP) struc-
tures, due to their wide intermediate channel design, often face signifi-
cant computational burdens when processing large-scale image inputs. 
To address this challenge, Wang et al. (2024a) inspired by related stud-
ies (Chen et al., 2022; Dauphin et al., 2017; Hua et al., 2022; Wang et al., 
2022) innovatively combined Spatial Attention (SA) and Gated Linear 
Unit (GLU) into the proposed GSAU. As shown in Fig. 8, this design not 
only achieves effective extraction of spatial information but also sig-
nificantly enhances model performance through the introduction of an 
adaptive gating mechanism. The core computational process of GSAU 
can be expressed as Eq. (6):
GSAU(𝑥) = LN(𝑓𝐷𝑊 (𝑥)⊗ 𝑠𝑐𝑎𝑙𝑒)) + 𝑥 (6)

where 𝑓𝐷𝑊 (.) and ⊗ indicate depth-wise convolution and element-wise 
multiplication, respectively, scale represents a learnable parameter for 
𝑥. GSAU is an adaptive gated attention mechanism, but its applicability 
in VSCI tasks has not yet been verified. In our task, adding a module with 
the ability of local feature information interaction can enable the model 
to achieve more effective extraction of spatial information, thereby im-
proving the performance of our method.

3.7.  Channel & spatial attention

The Channel Attention (CA) mechanism enables networks to selec-
tively focus on global features by modeling channel-wise dependencies 
(Hu et al., 2018), while the Spatial Attention (SA) mechanism empha-
sizes salient spatial regions (Dai et al., 2017). In the Feature Fusion Mod-
ule (FFM), global features are processed by the CA mechanism to en-
hance their discriminative power through channel-wise recalibration. 
Local features, on the other hand, are refined by the GSAU followed 
by SA, which jointly amplifies critical spatial regions while suppressing 
noise, thereby preserving essential local details.
CA(𝑥) = 𝜎(MLP(AvgPool(𝑥)) + MLP(MaxPool(𝑥)))

SA(𝑥) = 𝜎(𝑓 7×7(Concat[AvgPool(𝑥),MaxPool(𝑥)]))
(7)

where 𝜎 represents the Sigmoid function, and 𝑓 7×7 denotes a convo-
lution operation with a kernel size of 7 × 7. CA&SA in this paper re-
spectively use enhanced interaction capabilities of global and local fea-
ture information, which can achieve better results. Compared with using 
them alone, it enables the model to learn more comprehensive image in-
formation and improves the performance of our method. Compared with 
using SA and CA for each branch, it can greatly reduce the computing 
cost and improve the deployment efficiency.

3.8.  Video-level predictions

The source camera device classification process for videos employs a 
robust majority voting mechanism, implemented through the following 
systematic steps: Initially, 10 frames are randomly sampled from each 
video to ensure representative coverage. Subsequently, the pre-trained 
network model is utilized to classify each individual frame, generat-
ing prediction results for each sampled frame. Finally, the classification 
outcomes across all the frames are aggregated, and the device category 
with the highest frequency is determined as the source camera device 
of the respective video. This approach significantly improves classifica-
tion accuracy by leveraging the collective prediction results of multiple 
frames, thus mitigating the impact of potential outliers or frame-specific 
anomalies.

Our key contribution lies in the novel integration into a model specif-
ically designed for video source identification. We introduce LIA to re-
design the CNN and Swin-T for extracting global and local information, 
respectively. In the feature fusion module, the incorporation of GSAU 
and CA&SA enables the model to achieve more effective information 
extraction, thereby enhancing the performance of our method. This sys-
tematic integration has been validated through ablation studies (Sec-
tion 4.3).

4.  Results and analysis

4.1.  Datasets

VISION We utilize the Vision dataset (Shullani et al., 2017), which 
includes images and videos captured under various scenes and imaging 
conditions. This dataset comprises a total of 35 camera devices, includ-
ing 29 camera models. According to the dataset splitting strategy, we 
always retain 80% of videos from each category (70% for training set, 
10% for validation set), with the remaining 20% assigned to the test-
ing set. The labels and detailed information of the dataset used in our 
experiments are shown in Table 3.

QUFVD The QUFVD dataset (Akbari et al., 2022) consists of 6000 
videos captured by 20 devices from 10 brands. Each device is repre-
sented by 300 videos, with two devices per model (The QUFVD dataset 
has already been pre-divided, eliminating the need for manual partition-
ing.). Table 4 provides detailed information about the QUFVD dataset.

The VISION and QUFVD datasets are very commonly used and well-
known in the field of source camera identification. Moreover, corre-
sponding versions uploaded on Facebook and WhatsApp are provided, 

Expert Systems With Applications 297 (2026) 129475 

5 



B. Wang et al.

Table 3 
Details information of VISION dataset.
 Brand  Device  Resolution  Label
 Apple  iPhone 4S  1080×1920  D02
 Apple  iPhone 5c  1080×1920  D05
 Apple  iPhone 6  1080×1920  D06
 Apple  iPhone 4  1280×720  D09
 Apple  iPhone 4S  1080×1920  D10
 Apple  iPad 2  1280×720  D13
 Apple  iPhone 5c  1080×1920  D14
 Apple  iPhone 6  1080×1920  D15
 Apple  iPhone 5c  1080×1920  D18
 Apple  iPhone 6 Plus  1080×1920  D19
 Apple  iPad mini  1080×1920  D20
 Apple  iPhone 5  1080×1920  D29
 Apple  iPhone 5  1080×1920  D34
 Samsung  Galaxy S III Mini GT-I8190N  1280×720  D01
 Samsung  Galaxy GT-P5210  1280×720  D08
 Samsung  Galaxy S3 GT-I9300  1080×1920  D11
 Samsung  GalaxyTrendPlusGT-S7580  1280×720  D22
 Samsung  Galaxy S III Mini GT-I8190  1280×720  D26
 Samsung  Galaxy S5 SM-G900F  1080×1920  D27
 Samsung  Galaxy S4 Mini GT-I9195  1080×1920  D31
 Samsung  Galaxy Tab A SM-T555  1280×720  D35
 Huawei  P9 EVA-L09  1080×1920  D03
 Huawei  P9 Lite VNS-L31  1080×1920  D16
 Huawei  P8 GRA-L09  1080×1920  D28
 Huawei  Honor 5C NEM-L51  1080×1920  D30
 Huawei  Ascend G6-U10  1280×720  D33
 LG electronics  D290  800×480  D04
 Lenovo  P70-A  1280×720  D07
 Sony  Xperia Z1 Compact-D5503  1280×720  D12
 Microsoft  Lumia 640LTE  1280×720  D17
 Wiko  Ridge 4G  1280×720  D21
 Asus  Zenfone 2 Laser  640×480  D23
 Xiaomi  Redmi Note 3  1280×720  D24
 OnePlus  A3000  1280×720  D25
 OnePlus  A3003  1280×720  D32

Table 4 
Details information of QUFVD dataset.
 Brand  Device  Resolution  Label
 Samsung  Galaxy A50-1  1080×1920  D1
 Samsung  Galaxy A50-2  1080×1920  D2
 Samsung  Note9-1  1080×1920  D3
 Samsung  Note9-2  1080×1920  D4
 Huawei  Y7-1  720×1280  D5
 Huawei  Y7-2  720×1280  D6
 Huawei  Y9-1  720×1280  D7
 Huawei  Y9-2  720×1280  D8
 iPhone  8 Plus-1  1080×1920  D9
 iPhone  8 Plus-2  1080×1920  D10
 iPhone  XS Max-1  1080×1920  D11
 iPhone  XS Max-2  1080×1920  D12
 Nokia  5.4-1  1080×1920  D13
 Nokia  5.4-2  1080×1920  D14
 Nokia  7.1-1  1080×1920  D15
 Nokia  7.1-2  1080×1920  D16
 Xiaomi  Redmi Note8-1  1080×1920  D17
 Xiaomi  Redmi Note8-2  1080×1920  D18
 Xiaomi  Redmi Note9 Pro-1  1080×1920  D19
 Xiaomi  Redmi Note9 Pro-2  1080×1920  D20

and the collected content is also exchanged through social media plat-
forms, taking into account the variability in the real world (such as edit-
ing, compression, and resolution differences).

4.2.  Experiment details and evaluation metrics

We implement our PyTorch-based method by training on an NVIDIA 
RTX 2080 GPU. The training is conducted for a total of 100 epochs, with 
a base learning rate of 1e-4 and batch size of 16. For consistency, this 
paper adopts a uniform video frame size of 224 × 224. To maintain con-

Table 5 
DHFFNet specific parameters.

 Parameter  Number
 FLOPs  18.66G
 Parameters  125.74M
 Time for classifying each frame  5.62ms

Table 6 
Compared with SOTA methods on VISION dataset 
at model level.

 Method  ACC (%)
 LHFMF (Li et al., 2024)  97.19
 GCD (Korgialas et al., 2024)  97.07
 CMMCMI (Dal Cortivo et al., 2021)  99.00
 CMIAVC (Tsingalis et al., 2024)  95.38
 Ours  99.20

Table 7 
Experiments at the device and model level across VISION and 
QUFVD datasets.

 ACC(%)
 Dataset  Level  Frame level  Video level
 VISION  29 Cameras (model level)  97.88  99.20

 35 Cameras (device level)  97.68  98.94
 QUFVD  10 Cameras (model level)  84.41  85.00

 20 Cameras (device level)  64.33  65.25

sistency, we use the same training, validation and testing sets as in pre-
vious works. We select Accuracy (ACC) as the classification metric. The 
computational complexity of the model is relatively high. As shown in 
Table 5, the FLOPs is 18.66G, the Parameters are 125.74M, and the clas-
sification time of one frame during classification is 5.62ms. The model 
is conducted under the framework of Contributors (2018), utilizing the 
classification cross-entropy loss function to calculate the loss:

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁
∑

𝑛=1

𝑘
∑

𝑖=1
𝑦𝑡𝑖 log 𝑦

𝑝
𝑖 (8)

4.3.  Experimental results and analysis

Comparison with the state-of-the-art systems: We conducted 
comparative experiments with current SOTA methods to validate the 
superiority of our method, and the results are shown in Table 6. Our pro-
posed method, which integrates global and local features, achieved an 
identification accuracy of 99.20%, outperforming existing SOTA meth-
ods in feature fusion. The experimental results prove the effectiveness 
of the dual-branch hierarchical feature fusion strategy. By integrating 
global and local features, our model can more comprehensively capture 
the unique features of each camera model in video data.

Performance on other datasets: As shown in Table 7, we conducted 
comparative experiments on both the VISION and QUFVD datasets to 
comprehensively evaluate our method’s performance. On the QUFVD 
dataset, our method achieved identification accuracies of 85.33% at the 
model level and 64.67% at the device level. In contrast, on the VISION 
dataset, it attained 99.20% and 98.94% at model and device levels, 
respectively.

These results demonstrate that our model achieves superior accu-
racy on the VISION dataset. At the model level, our proposed approach 
also delivers satisfactory performance on the QUFVD dataset, though its 
overall accuracy remains slightly lower than that achieved on the visual 
dataset. This discrepancy primarily stems from the substantial volume 
fluctuations in QUFVD’s data distribution, which lead to severe class 
imbalance. The limited training samples for certain categories further 
reduce identification accuracy.
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Fig. 8. The architecture of feature fusion module.

Fig. 9. Grad-CAM visualizations.

Additionally, while both VISION and QUFVD are widely adopted 
benchmarks, existing models (including ours) have not been rigorously 
evaluated on strictly edited or AI-generated videos. Future work will 
focus on improving robustness against synthetic content, cross-dataset 
generalization, and mitigating data scarcity to enhance source identifi-
cation performance.

The confusion matrices for the model on the VISION and QUFVD 
datasets are present in Fig. 10–13. In particular, the accuracy of the 
model source identification is higher than the accuracy of the device 
source identification. Among these cases, the majority of misclassified 
device models belong to the same brand. For example, in the QUFVD 
model source identification experiment, our method incorrectly classi-
fied 13% of the original videos captured by the iPhone XS Max as the 

iPhone 8 Plus. This shows that video processing workflows may erode 
subtle distinctive traces between different device models, leading to in-
creased misidentification rates among devices from the same brand.

Ablation study: We evaluated the impact of various components 
on model performance using the QUFVD dataset, and the experimen-
tal results are shown in Table 8. The experimental results indicate that 
the introduction of the local branch significantly improved model per-
formance, with frame-level and video-level identification accuracy in-
creasing by 7.76% and 5.92% respectively. As shown in Fig. 9, this 
performance improvement mainly benefits from the synergistic effect of 
the dual-branch network structure: the global branch captures overall 
features while the local branch extracts detailed information, comple-
menting each other to enhance the model’s representation capability.

Expert Systems With Applications 297 (2026) 129475 

7 



B. Wang et al.

Fig. 10. Comparative experimental confusion matrixs on VISION dataset at device level.

Fig. 11. Comparative experimental confusion matrixs on VISION dataset at model level.

Table 8 
Ablation experiments on QUFVD dataset at device 
level.

 Method  ACC (%)
 Frame level  Video level

 Swin-T network  55.54  57.83
 +Mutli-stage CNN  63.30  63.75
 +LIA  63.39  64.08
 +SA&CA  63.77  64.83
 +GSAU  64.33  65.25

The LIA mechanism, through combining local importance calcula-
tion with attention mechanisms, adaptively enhances useful features and 
suppresses irrelevant noise, enabling the model to more precisely cap-

ture image details and structural information. Although LIA is a local 
attention mechanism, it successfully achieves higher-order information 
interaction effects comparable to global attention through local impor-
tance modeling and gating mechanisms. CA selectively enhances im-
portant channel features, while SA focuses on key spatial regions. After 
introducing CA and SA mechanisms in the FFM, the classification accu-
racy is further improved, achieving effective fusion of global and local 
features.

GSAU effectively integrates spatial information by introducing gat-
ing mechanisms and Spatial Attention. After adding GSAU, the perfor-
mance of the model improved by 0.42%, proving that GSAU can im-
prove the performance of the model.

Through ablation experiments by gradually removing or adding 
modules, the experiments show that each module (Local Feature Extract 
Path, CA&SA, LIA, and GSAU contributes to performance improvement.
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Fig. 12. Comparative experimental confusion matrixs on QUFVD dataset at device level.

Fig. 13. Comparative experimental confusion matrixs on QUFVD dataset at model level.

Table 9 
Sampling sensitivity analysis on VISION and QUFVD dataset at device level.
 Acc and dataset  VISION  QUFVD

 1st  2nd  3rd  4th  5th  1st  2nd  3rd  4th  5th
 ACC (%)  98.94  98.67  99.20  98.67  99.20  65.17  65.33  65.25  65.50  65.00
 Average ACC (%)  98.94  65.25
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Sampling sensitivity analysis: For the VISION dataset, the accu-
racy across 5 trials ranged between 98.67% and 99.20%, with a stan-
dard deviation of 0.23%. The minimal variation confirms that random 
sampling introduces negligible bias for this dataset, likely due to its high 
inter-frame consistency. The QUFVD dataset showed slightly greater 
variation in experimental accuracy (65.00%–65.50%, std: 0.19%), in-
dicating marginally higher sensitivity to frame selection. This may stem 
from QUFVD’s more diverse intra-video content, though the limited 
range (≤ 0.5%) still demonstrates robustness. Our experimental results 
demonstrate that 10-frame sampling achieves stable performance for 
both datasets. The specific experimental data can be seen in Table 9.

5.  Conclusion

In this paper, we propose a novel Dual-branch Hierarchical Feature 
Fusion Network (DHFFNet) for video camera source identification. The 
model extracts global and local features through a dual-branch architec-
ture, where the Multi-Stage Convolutional Neural Network (MSCNN) 
incorporates a Local Importance-based Attention (LIA) mechanism to 
adaptively enhance local information. These features are then fused by 
a dedicated feature fusion module empowered by Gated Spatial Atten-
tion Unit (GSAU), Spatial Attention (SA), and Channel Attention (CA) 
mechanisms. During inference, the model classifies individual frames, 
aggregates the predictions via majority voting, and assigns the most fre-
quent device category as the final video-level source. The experimental 
results demonstrate that DHFFNet outperforms the comparative meth-
ods on both VISION and QUFVD datasets.

However, limitations remain in handling small-sample datasets and 
videos from similar sensor devices, and the robustness against heavily 
edited or AI-generated videos requires further evaluation. Future work 
will focus on: (1) advancing device-level VSCI, (2) optimizing model 
deployment for mobile/edge platforms, and (3) evaluating adversarial 
robustness.
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