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Abstract—In recent years, the field of audio deepfake detection
has witnessed significant advancements. Nonetheless, the majority
of solutions have concentrated on high-quality audio, largely over-
looking the challenge of low-quality compressed audio in real-world
scenarios. Low-quality compressed audio typically suffers from a
loss of high-frequency details and time-domain information, which
significantly undermines the performance of advanced deepfake
detection systems when confronted with such data. In this paper,
we introduce a deepfake detection model that employs knowledge
distillation across the frequency and time domains. Our approach
aims to train a teacher model with high-quality data and a stu-
dent model with low-quality compressed data. Subsequently, we
implement frequency-domain and time-domain distillation to fa-
cilitate the student model’s learning of high-frequency information
and time-domain details from the teacher model. Experimental
evaluations on the ASVspoof 2019 LA and ASVspoof 2021 DF
datasets illustrate the effectiveness of our methodology. On the
ASVspoof 2021 DF dataset, which consists of low-quality com-
pressed audio, we achieved an Equal Error Rate (EER) of 2.82%.
To our knowledge, this performance is the best among all deepfake
voice detection systems tested on the ASVspoof 2021 DF dataset.
Additionally, our method proves to be versatile, showing notable
performance on high-quality data with an EER of 0.30% on the
ASVspoof 2019 LA dataset, closely approaching state-of-the-art
results.

Index Terms—Audio deepfake detection, low-quality compres-
sed audio, knowledge distillation.

I. INTRODUCTION

IN RECENT years, we have witnessed the rapid emergence
of Artificial Intelligence Generative Content (AIGC) in the
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literature. As one of the most popular techniques, Deepfake,
which can be applied for synthesizing high-quality visual and
audio contents, has been extensively applied, e.g. VALL-E [1]
released by Microsoft, a novel speech synthesis model. However,
while these techniques greatly boost entertainment applications,
they also raise significant concerns regarding malicious attacks
and associated negative impacts.

Speech synthesis technology, such as text-to-speech (TTS) or
voice conversion (VC), can be misused for AI fraud or the spread
of misleading information. For example, fake speech generated
by these technologies can be used to impersonate voices for
scams, and the dissemination of fake videos or speeches of
famous person can cause significant social impact. With all such
concerns, the detection of forged content is in crucial need and
there is a great amount of work focusing on the detection of
forged audio content.

To address the aforementioned concerns, researchers fo-
cus on developing effective and generalizable deepfake detec-
tors [2], [3], [4]. Meanwhile, addressing the security of Auto-
matic Speaker Verification (ASV) systems and risks of spoofing
attacks, the ASVspoof and Audio Deep Synthesis Detection
challenges were successfully held in the past decade [5], [6],
[7], [8], [9], [10]. In recent years, some researchers have also
begun to pay attention to partially fake audio and are dedicated
to developing detectors capable of identifying and distinguish-
ing manipulated segments within audio [11], [12], [13]. Cur-
rently, state-of-the-art deepfake audio detection models exhibit
excellent performance on high-quality datasets. However, in
real-life scenarios, e.g. in the context of social media, audio
data is commonly compressed in a low-quality format with a
loss of information, rendering challenges on deepfake audio
detection. Generally speaking, there are two primary issues with
low-quality compressed data.

Loss of frequency domain information: Since humans have a
more sensitive perception of low-frequency components, many
lossy compression algorithms, e.g. MP3 and OGG, intentionally
discard high-frequency data to reduce the file size. As visualized
in Fig. 1, there is a significant difference in the high-frequency
components between the original speech and the compressed
speech. Nevertheless, [14] observes that while the synthesized
voice well resembles the low-frequency information comparing
with real speeches, the artifacts in high-frequency parts are more
distinct - but the compression algorithms may cause a loss on
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Fig. 1. The upper part of the figure displays the spectrogram of the original
audio, while the lower part shows the spectrogram of the MP3 compressed audio.
The left side of the figure contains the overall frequency spectrum ranging from
0 to 10,000 Hz. To observe the differences in high-frequency components in
greater detail, the right side presents the high-frequency spectrum ranging from
6,000 to 10,000 Hz.

Fig. 2. The top half of the figure represents the overallwaveform plots of
the original audio sample and its compressed copy, where blue indicates the
waveform of the original audio and red indicates the waveform of the compressed
audio. The boxed areas highlight the differences between them. The lower part
of the figure displays an enlarged view of the differential areas.

this part of the information, resulting in the detection of forged
speech after compression to be more challenging.

Loss of time domain information: Besides the aforementioned
defects, lossy compression algorithms also involve quantization
and clipping, resulting in the loss of time-domain details, render-
ing the speech signal to be smoother, particularly in regions with
rapid changes. Fig. 2 visually illustrates the waveform graphs of
the original audio sample and its compressed counterpart, and
one may observe that the compressed audio exhibits a smoother
waveform in certain segments, in other words, details are lost,
such that detection model may suffer from performance drop.

In this paper, to address the issues mentioned above, we
propose to conduct knowledge distillation in both frequency-
domain and time-domain data to detect forged voice data in low
quality. While knowledge distillation is a typical approach to
convert deep learning models into lightweight versions, inspired
by [15], [16], we adopt a data distillation approach, that is, we use
high-quality data to train the teacher model and low-quality data
to train the student model. Then, we apply frequency-domain
and time-domain distillation to enable the student model to learn
the frequency-domain and time-domain information regarding
data compression loss from the teacher model, so as to im-
prove the forgery detection performance of low-quality data. For
time-domain distillation we use the sliced Wasserstein distance

and contrast loss to evaluate time-domain feature differences,
and for frequency-domain distillation we use the square of
the Euclidean distance to evaluate frequency-domain feature
differences, with details of the algorithms given in Section III
of the paper. It’s important to note that the high-quality data and
low-quality data used to train the distillation model are paired,
and we employ lossy compression algorithms to compress the
high-quality dataset, yielding the corresponding low-quality
compressed dataset.

Our contributions are summarized as follows:
� We propose a frequency domain knowledge distillation

method. That is, we enable the student model to effectively
learn the high-frequency information from the teacher
model, which is lost by compression.

� We propose a time-domain knowledge distillation method.
That is, we calculate the differences in inter-layer fea-
tures between student and teacher models through Sliced
Wasserstein Distance (SWD) and contrastive loss, enabling
the student model to better learn the time-domain details
lost in compression.

� We conducted experiments on the ASVspoof 2021 DF
and the ASVspoof 2019 LA datasets, demonstrating the
satisfactory results of our method over baseline models.
Additionally, we perform compression over data from other
datasets for extra tests, verifying the generalization capa-
bilities of our proposed method.

II. RELATED WORK

A. Audio Deepfake Detection

Currently, the main focus of research in fake speech detec-
tion is centered on the development of front-end features and
back-end models. For front-end features, a substantial number
of efforts [14], [17], [18] have underscored the significance
of effective features for identifying fake attacks. The features
employed in forged speech detection can be broadly classified
into four categories: acoustic features [19], [20], raw audio [21],
[22], paralinguistic features [23], [24], and self-supervised fea-
tures [25], [26]. Commonly used handcrafted acoustic features
include Linear Frequency Cepstral Coefficients (LFCC) [27],
Mel Frequency Cepstral Coefficients (MFCC) [27], Constant
Q Cepstral Coefficients (CQCC) [28], and others. Due to the
use of a fixed window length in the Short-Time Fourier Trans-
form (STFT) for traditional handcrafted features, there is often
insufficient capture of rapidly changing temporal dynamics,
particularly in transient and swiftly varying speech segments.
In addition, there is a large amount of nonlinear information in
speech signals that is difficult to capture with traditional linear
processing methods. Therefore, given that hand-designed front-
end features may miss a large amount of speech information,
Tak et al. [29] advocated the direct use of raw audio as input
to spoofing detection models. As speech synthesis technology
advances, distinguishing between forged and genuine speech
based solely on acoustic features becomes increasingly chal-
lenging. Some researchers advocate for the use of paralinguistic
features to differentiate between genuine and forged speech.
For instance, [30] suggested that audio deepfake techniques
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fail to accurately synthesize natural emotional information, thus
proposing the use of emotional information in speech for audio
deepfake detection. Reference [23] focused on the duration of
phonemes and pronunciation features for spoofing detection.
Reference [31] discovered that speech synthesis systems are
unable to synthesize human breathing sounds, leading to the
proposal of employing breath detection techniques to support
spoofing detection tasks. Another prominent feature extractor
for fake audio detection is wav2vec [3], [26], which is grounded
on a self-supervised method and is trained on a large corpus of
unlabeled data. The features extracted by wav2vec demonstrate
excellent generalization capabilities and can effectively differ-
entiate between genuine and fake speech.

For back-end models, a wide collection of deep neural
network-based classifiers have shown excellent performance in
detecting fake speech. Several studies [32], [33] have introduced
classifiers built on the ResNet architecture for this purpose.
To improve the model’s ability to generalize, Gao et al. [34]
introduced the Res2Net structure, a variant designed to enhance
performance further. This has led to numerous successful appli-
cations [35], [36] of the Res2Net architecture in the field of fake
speech detection. Additionally, recent advancements have seen
the development of end-to-end networks [37], [38] that integrate
feature extraction and classification processes, optimizing them
directly on raw audio waveforms. These models have achieved
notable success, showcasing competitive performance in the task
of fake speech detection.

While there has been considerable research on both front-
end features and back-end classification networks for spoofing
detection, the challenge of detecting spoofing in low-quality
data encountered in real-life situations has received less atten-
tion. Models such as [37], [39] have shown relatively better
performance on high-quality datasets. However, their effec-
tiveness significantly decreases when applied to low-quality
datasets, such as noisy or compressed data. For noisy data, Fan
et al. [40] introduced a dual-branch knowledge distillation model
for noise-robust synthetic speech detection. For compressed
data, this paper introduces a knowledge distillation approach
designed specifically for low-quality compressed data. This
method enhances the student model’s forgery detection capa-
bilities on compressed speech by utilizing time and frequency
domain distillation between the teacher and student models.

B. Knowledge Distillation

Knowledge distillation, a concept first introduced by Hinton
et al. [41] in 2015, is aimed at reducing the size of a mod-
elâspecifically its depth and widthâwhile either maintaining or
enhancing its performance. The fundamental principle behind
knowledge distillation is the transfer of knowledge from a com-
plex, often larger, teacher model (usually a deep neural network)
to a simpler, typically smaller, student model (often a shallow
neural network). This method involves retraining the student
model using the predicted distributions from the teacher model
as labels, aiming to closely mimic the teacher model’s behavior.
Moreover, knowledge distillation can improve the performance
of models by leveraging the insights gained from larger models

to enable smaller models to generalize more effectively to new
data, thereby boosting their performance.

With the widespread application and development of knowl-
edge distillation techniques, numerous variations have been
introduced to enhance model performance across different tasks.
These include:

Attention Transfer [42]: This technique leverages attention
mechanisms to guide the student model in learning the teacher
model’s attention distribution, aiming to improve performance.

Multi-Teacher Distillation [43]: This method uses multiple
teacher models to impart knowledge, thereby enhancing the
student model’s performance. Reference [44] introduced the
Teach-DETR model, which combines predictions from multiple
teacher detectors to provide parallel supervision to the student
detector, improving voice deepfake detection performance.

Self-Distillation [45]: For this method, the teacher and student
models are different iterations of the same architecture, engaging
in knowledge transfer through self-supervised training. Refer-
ence [46] applied this method to improve detection performance
in speech deepfake detection tasks.

FitNets [47]: This approach facilitates knowledge transfer
at intermediate layers, enabling the student model to learn
from both the final output and the intermediate layers of the
teacher model. Reference [15] employed this strategy in noise-
conditioned speech deepfake detection, achieving notable suc-
cess.

Integral Knowledge Amalgamation [48]: Based on integral
knowledge amalgamation, this method generalizes voice spoof-
ing detection and aims to detect synthetic and replay attacks
simultaneously. This method involves using two teacher models,
each focusing on a type of attack, to transfer knowledge to the
student model through feature fusion. An adversarial learning-
based fusion module ensures the global structural consistency
between both teacher models and the student model.

These developments show the dynamic nature of knowl-
edge distillation techniques and their capacity to significantly
boost the capabilities of models in various domains, including
the challenging arena of spoofing detection, as demonstrated
in [49], [50], [51]. Notably, the knowledge distillation frame-
work has become a popular method across various task scenar-
ios, showcasing remarkable performance improvements. In this
work, we propose a knowledge distillation model tailored for
forgery detection tasks, specifically designed for low-quality
compressed scenes. Our method draws inspiration from the
FitNets approach, employing intermediate layer outputs from
both teacher and student models for distillation in the frequency
and time domains. By doing so, the student model is enabled to
more accurately replicate the teacher model’s behavior in these
domains. This approach significantly enhances the forgery de-
tection capabilities of our model when dealing with low-quality
compressed speech, addressing a critical need in the field of
audio security.

III. PROPOSED METHOD

The prime novelty of the paper is a knowledge distillation-
based solution for deepfake speech detection, which consists of
two major modules:
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Fig. 3. The schematic diagram of the proposed Knowledge Distillation framework. The student model and teacher model both consist of XLS-R and ResNet-18.
This framework incorporates both frequency and time domain distillation, aiming to enable the student model to learn high-frequency information and temporal
information lost in the compressed data.

1) frequency domain distillation, which enables the student
model to capture the high-frequency information con-
tained in high-quality data (which is lost during compres-
sion);

2) time domain distillation, which allows the student model
to acquire time-domain detailed information that may
be lost in compressed data. Fig. 3 shows the schematic
diagram of the proposed Frequency-Time Domain Knowl-
edge Distillation Model. In this paper, we employ
XLS-R [52] to extract speech features and utilize ResNet-
18 [53] as the backbone network. Our teacher and student
models use the same network architecture and the only
difference is the input data used for training. We begin
by training the teacher model with high-quality data and
subsequently load the trained teacher model to perform
knowledge distillation training on the student model. In
what follows, we first introduce the feature extraction and
backbone network, then provide details regarding the two
distillation modules we propose, as well as the aggregation
of the overall losses of the model.

A. Feature Extraction and Backbone Network

Self-supervised learning has been extensively applied in the
literature. In the field of speech (i.e. voice data), [54] presented
wav2vec 2.0, a framework designed for self-supervised speech
representation learning that comprises both convolutional neural

network (CNN) and Transformer. The CNN extracts a sequence
of primary feature vectors from the input (voice) waveform,
while the transformer maps these primary feature vectors to
high-level feature representations containing global contextual
information to capture the information contained in the entire
sequence. Reference [52] presents XLS-R, a large-scale cross-
lingually pre-trained wav2vec 2.0 model. It leverages 436K
hours of recorded speech audio collected from 128 different
languages for training, and the extensive training data admits
XLS-R with great generality for various downstream tasks.

In this paper, we utilize the pre-trained large-scale model
XLS-R to extract speech features from the raw speech wave-
form signal. It is worth noting that, we employed a fine-tuning
step to empower XLS-R to better distinguish fake speeches
from genuine ones. XLS-R is composed of both CNN and
Transformer, both of which are network models designed for
processing sequential data. Since speech is a time-series data
and the speech data input to the XLS-R model doesn’t undergo
frequency domain transformation, we consider the speech fea-
ture output by the XLS-R model as time domain feature. The
feature obtained after the Fast Fourier Transform (FFT) of the
time domain feature is regarded as frequency domain feature.
Subsequently, we perform knowledge distillation separately on
the time and frequency domain features. This allows the student
model to learn the information lost in the compressed data
from the teacher model through distillation in both the time and
frequency domains.
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Fig. 4. Illustration of the frequency domain distiller. FFT represents the fast
Fourier transform, converting features into frequency domain representations of
F̂t and F̂s. The distance metric function d is used to calculate the difference
between the two features in the frequency domain. W represents weight, which
is composed of the exponential difference across channels between the features
in the frequency domain. Finally, the product of the distance and the weight is
accumulated to obtain the distillation loss in the frequency domain.

In this work, we utilize the ResNet as the backbone network to
implement audio forgery detection. ResNet has been widely ap-
plied in various contexts, which introduces residual connections,
that is, adding input data to subsequent layers through shortcut
connections, to enable learning on the residual information
added from the identity mapping and alleviating the vanishing
gradient problem. More specifically, we apply ResNet-18. Com-
pared to other more complicated variants, ResNet-18 is better
suited for the classification task in this paper as i) The features
extracted by the XLS-R model already possess a high level of
informativeness and discriminative power. Therefore, utilizing
ResNet-18 allows for the full exploitation of these rich features
and efficient execution of the classification task. In contrast,
deeper networks may introduce overfitting issues, leading to a
decrease in generalization performance. ii) ResNet-18 entails
fewer parameters and computational requirements during both
training and testing processes, thus offering greater computa-
tional efficiency.

B. Frequency Domain Knowledge Distillation

As mentioned previously, compression may result in high-
frequency information loss in the data. As illustrated in Fig. 4,
we propose to utilize frequency domain distillation to enable
the student model to acquire the missing frequency domain
information from the teacher model.

In what follows, we denote the number of channels as C, the
total number of frames as T , and the dimension of the features as
F . Firstly, the pre-trained XLS-R model extracts feature vector
F ∈ RT×F from the voice data. With F being taken as input
to the classification network, from where we extract the inter-
mediate layer features. The intermediate layer features of the
teacher and student models are denoted as Ft,Fs ∈ RC×T×F .
For capturing the frequency-domain difference between raw and
compressed data, we use the canonical Fast-Fourier-Transform
(FFT) to derive the frequency domain feature vectors F̂s and
F̂t, respectively. Here, for the teacher model, we compute the

corresponding feature vector in the frequency domain

F̂t(c, k, f) =
T−1∑
t=0

Ft(c, t, f) · e
−i·2πtk

T . (1)

Similarly, we can derive the frequency feature for the student
models. Here, we use k to represent the frequency index and i
as the imaginary unit.

To enable the student model to acquire the missing frequency
domain information, we measure the disparity between the
teacher and student model’s frequency domain features. We first
compute the square of the l2-norm per channel c and frequency
k as follows,

D(c, k) =
F∑

f=1

(
F̂t(c, k, f)− F̂s(c, k, f)

)2
. (2)

where F represents the number of feature dimensions.
Since the output of FFT is a complex number, F̂t and F̂s

are also complex-valued data. In (2), F̂t − F̂s is computed by
separately taking the real and imaginary parts of F̂t and F̂s and
calculating their differences. The detailed process is as follows:

F̂t − F̂s =

√
(Re(F̂t)− Re(F̂s))2 + (Im(F̂t)− Im(F̂s))2

(3)
were Re and Im denote the real and imaginary parts of the
complex-valued data, respectively.

In order to emphasize the distinctions in frequency domain
features more clearly, we calculate the exponential difference
across channels between the teacher and student frequency
domain features. This calculation serves as the weight. This
approach is specifically designed to highlight the disparities in
the features, thereby reducing the impact of similarities. The
weight is mathematically defined in the following manner:

W (k) = exp

(
λfreq ·

1

C

C∑
c=1

D(c, k)

)
(4)

Here, to further refine our approach, we introduce λfreq, a hy-
perparameter, for scaling the weight. This weight is crucial.
Specifically, when the distance D(c,K) between the frequency
domain features of the teacher and student models is large,
the weight W (K) is exponentially amplified. Conversely, when
the distance is small, the weight W (K) decreases. Therefore,
this weighting mechanism can amplify the differences between
the frequency-domain features, ensuring that the model training
process focuses more on these differing aspects. Integrating this
concept, we define the frequency domain distillation loss for our
teacher and student models in the following manner:

Lfreq =

C∑
c=1

K∑
k=1

F∑
f=1

(
W (k) ·

(
F̂t(c, k, f)− F̂s(c, k, f)

)2)
(5)

C. Time Domain Knowledge Distillation

To facilitate the effective imitation of the teacher model by
the student model, particularly in learning the time domain
information that is lost in compressed data, we utilize the Sliced
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Wasserstein Distance (SWD) as described in [55] and contrastive
loss as detailed in [56]. These methods are employed for time
domain distillation on the intermediate layer features of both
models.

The Sliced Wasserstein Distance is a metric for quantifying
the similarity between two probability measures. It is a modifica-
tion of the Wasserstein distance, tailored to lessen computational
demands by projecting the data onto lower dimensions. This
technique involves projecting a high-dimensional distribution
onto various one-dimensional marginal distributions and then
computing the optimal transportation cost for each projection.

Here we chose to use the sliced Wasserstein distance to
measure time-domain feature differences for two reasons. First,
it preserves structural information about the data. The sliced
Wasserstein distance takes into account the distribution and
shape of the data, rather than simply focusing on statistical
features such as the mean and variance of the data, which is
particularly important for time-series speech data. Second, the
sliced Wasserstein distance is able to be robust to outliers and
noise in the data when calculating the distance between distri-
butions. This enables more accurate comparisons of similarities
between different speech signals without excessive interference
from noise or outliers when dealing with real speech data.

Let us denote Ω as a probability space, and μ and υ as two
probability measures in P(Ω). Given a norm parameter q, the
q-Wasserstein distance between μ and υ in P(Ω) is defined as
follows:

Wq (μ, υ) =

(
inf

γ∈Π(μ,υ)

∫
Ω×Ω

c (Z1, Z2)
q dγ (Z1, Z2)

)1/q

(6)
In (6), γ ∈ Π(μ, υ) is defined as Π(μ, ν) = {γ ∈ P(Ω×

Ω)|π1#γ = μ, π2#γ = ν}, where π1 and π2 are two marginal
projections of Ω× Ω to Ω. The expression π1#γ = μ signifies
that the marginal projection of γ onto the first component equals
μ, and similarly,π2#γ = υ signifies that the marginal projection
of γ onto the second component equals υ. Additionally, we
introduce c : Ω× Ω → R+ being a transportation cost function.
In our experiments, we set c(Z1, Z2) = |Z1 − Z2|2. Here, Z1

and Z2 represent samples from the distributions μ and υ, re-
spectively.

Calculating the Sliced Wasserstein distance entails selecting
multiple random directional vectors on the unit sphere Sd−1.
Subsequently, the two probability measures μ and υ are pro-
jected onto the chosen projection directions. For each distribu-
tion’s projection, calculate the 1-Wasserstein distance (where q
is set to 1in the q-Wasserstein distance). Finally, obtain the Sliced
Wasserstein Distance (SWD) by taking the weighted average of
the 1-Wasserstein distances for all projection directions. The
Sliced 1-Wasserstein distance (SWD) is defined as follows:

SWD(μ, υ) =

∫
Sd−1

W1 (Rθμ,Rθυ) dθ (7)

where R represents the Radon transform, which is a method
used to project high-dimensional data onto a lower-dimensional

Fig. 5. Illustration of the time domain distiller. PFt and PFs represent the
probability distributions obtained by normalizing the features of the teacher and
student models. Then PFt and PFs are projected onto the random direction
vector θi, and the projection results are sorted in ascending order. CL represents
contrastive loss.

(typically one-dimensional) space, Rθμ and Rθυ represent one-
dimensional linear projection operations on probability mea-
sures μ and υ, and θ is the uniform measure on the unit sphere
Sd−1 in Rd such that

∫
Sd−1 dθ = 1. Consequently, calculating

the Sliced Wasserstein distance is equivalent to solving several
one-dimensional optimal transport problems with closed-form
solutions.

In particular, when sorting the Rθμ and Rθυ samples in
ascending order, SWD can be approximated as:

SWD(μ, υ) ≈
M∑

m=1

N∑
i=1

c
(
Rθmμα(i)

,Rθmυβ(i)

)
(8)

where M is the number of uniformly random samples of θ,
N represents the number of samples in Rθμ and Rθυ , and α
and β denote permutations of the samples from Rθμ and Rθυ

after they have been sorted in ascending order. In this work,
to calculate the SWD for the intermediate layer features of
the student and teacher models, we perform the square of the
Frobenius norm normalization on Fs and Ft to obtain their
probability measure representations PFs and PFt. The specific
definition is as follows:

Ft_norm=

√√√√ F∑
f=1

(Ft(c, t, f)2) where Ft_norm∈Rc×t×1

(9)

PFt(c, t, f) =

(
Ft(c, t, f)

Ft_norm(c, t, 1)

)2

(10)

Similarly, we can derive the probability measure representation
of the feature of the student model.

Fig. 5 pictorially illustrates our overall time domain distilla-
tion. The loss for time domain distillation is specifically defined
as follows:

Ltime = αtime · SWD (PFt,PFs) + βtime · CL (PFt,PFs)
(11)

where CL(PFt,PFs) represents the contrastive loss for PFt

and PFs, and αtime and βtime are hyperparameters that balance
the SWD and contrastive loss.
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It is important to note that, in order to improve the student
model’s ability to imitate the teacher model, we introduce the
contrastive loss in time domain distillation to narrow the distance
between samples of the same category and increase the distance
between samples of different categories. CL(PFt,PFs) is
defined as follows:

CL (PFt,PFs) =
1

2N

N∑
n=1

[
yn · dn(PFt,PFs)

2

+ (1− yn) ·max (0,Δ− dn (PFt,PFs))
2
]

(12)

where N represents the number of sample pairs, each sam-
ple pair consists of a feature from student model and a fea-
ture from teacher model. When these features belong to the
same category, the label yn is set to 1, otherwise, the label is 0.
The dn denotes the Euclidean distance between PFt and PFs

for the n-th sample pair, and Δ is a margin threshold used to
specify the minimum distance between negative sample pairs.

D. Overall Loss Function

The total loss of our proposed knowledge distillation frame-
work consists of three components, defined as follows:

Loverall = γ × LCE + η × Lfreq + λ × Ltime (13)

whereLCE represents the classification loss of the student model.
The parameters γ, η, and λ are hyperparameters used to balance
these three losses, respectively. Because the frequency domain
distillation loss being accumulated from differences across three
dimensions - channels, frame numbers, and feature dimension
numbers, it tends to be much larger compared to the time
domain distillation loss. Therefore, in subsequent experiments,
to balance time and frequency domain distillation, we typically
set η to 1 and choose a relatively larger value for λ.

IV. EXPERIMENTAL SETUPS

A. Compression Algorithms

In our experiments, the original data are compressed into the
following formats.
� MP3: This format employs lossy compression by exploit-

ing auditory maskingâwhere certain signals become in-
audible in high (or low) frequency domains. It reduces
data volume by removing less perceptually significant high
and low-frequency sounds and by quantizing sound more
coarsely.

� MP2: As a precursor to MP3, MP2 uses less advanced psy-
choacoustic models for lossy compression. It decreases file
size by removing less perceptible high-frequency signals
and utilizing masking effects, in addition to lowering the
sampling rate to reduce the data stream.

� AAC (in M4A): The M4A file format typically contains
AAC-encoded audio, which uses more efficient encoding
algorithms like subband analysis and vector quantization.
These algorithms partition audio signals in the frequency
domain to remove less noticeable components, thus reduc-
ing data volume.

� OGG: This format uses the Modified Discrete Cosine
Transform (MDCT) and psychoacoustic models to achieve
compression. It reduces file size by discarding high-
frequency signals and other elements less perceptible to
the human ear.

� GSM: Focused on reducing bandwidth for voice transmis-
sion, the GSM codec employs Linear Predictive Coding
(LPC). This technique compresses voice data by predicting
future samples based on past samples and transmitting only
the residual differences, effectively removing redundant
high-frequency information.

� OPUS: OPUS codec utilizes advanced psychoacoustic
models to identify and remove audio information less sen-
sitive to human hearing. It employs lossy compression to
eliminate or minimize lower-level noise, certain frequency
signals, and transient signals, making it efficient for a wide
range of audio types.

� AC3: uses subband filtering techniques to remove signals
within certain frequency ranges and employs quantization
and coding to reduce data volume. This often results in the
loss of some high-frequency and low-frequency signals, as
well as a decrease in precision.

� DTS: DTS utilizes psychoacoustic models and quantiza-
tion techniques to remove or reduce less perceptible audio
information in the data. It provides high audio quality
through multi-channel encoding and high bitrates.

� WMA: WMA compresses audio signal frequency compo-
nents, dynamic range, and sound details. It employs vari-
ous encoding techniques, including audio coding, subband
coding, and psychoacoustic models, to reduce the size of
audio files.

� RA: RA is commonly used for online audio broadcasting
to save bandwidth. It primarily compresses the frequency
components and sound dynamic range of audio.

B. Datasets

1) ASVspoof Datasets: The Automatic Speaker Verification
Spoofing and Countermeasures Challenge (ASVspoof chal-
lenges) is designed to advance research in detecting fake audio. It
primarily focuses on deceptive techniques in automated speaker
verification and corresponding defensive strategies. In our work,
we mainly used ASVspoof 2019 LA dataset [57] and ASVspoof
2021 DF dataset [58].
� ASVspoof 2019 LA dataset: The ASVspoof 2019 LA

Database comprises both authentic and counterfeit speech.
The latter includes converted and synthesized speech, pre-
dominantly created using 19 different spoofing algorithms
(A01-A19). This database is divided into three segments:
a training set for model development, a validation set
for selecting the most effective model during the training
process, and a testing set for assessing the model’s per-
formance. The training and validation sets predominantly
speech samples synthesized by four speech synthesis algo-
rithms and converted by two speech conversion algorithms,
labeled A01 to A06. To evaluate the model’s generalization
capability, the test set integrates spoofing attacks created by
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TABLE I
THE DETAILED INFORMATION OF ASVSPOOF 2019 LA DATASET

TABLE II
DETAILS OF THE COMPRESSION IN THE ASVSPOOF 2021 DF DATASET

TABLE III
SUMMARY OF ASVSPOOF 2021 LA DATA CONDITIONS

13 different algorithms, identified as A07 to A19. Among
these, there are 11 unknown spoofing algorithms and 2
known algorithms (A16 and A19, using the same methods
as A04 and A06). Comprehensive details of the ASVspoof
2019 LA dataset can be found in Table I.

� ASVspoof 2021 LA dataset: The ASVspoof 2021 LA eval-
uation data includes a collection of bona fide and spoofed
utterances transmitted over a variety of telephony systems
including voice-over-IP (VoIP) and a public switched tele-
phone network (PSTN). This database, like the 21 DF
dataset, contains only a test set. It includes a total of
181,566 utterances, comprising both genuine and spoofed
ones. Detailed information can be found in Table III.

� ASVspoof 2021 DF dataset: The ASVspoof 2021 DF
Database provides only the test set, designed to mirror real-
life situations where the characteristics of forged speech
are unpredictable. Most of the speech in the database has
undergone lossy compression. Consequently, this charac-
teristic substantially elevates the challenge of detection in
the ASVspoof 2021 DF Database. Encompassing a total of
611,829 utterances, both genuine and forged, the database
utilizes a variety of lossy codecs commonly employed in

media storage. Detailed in Table II, these compression
methods include three single lossy compression algorithms
and two sequential compression algorithms. The source
data for the ASVspoof 2021 DF Database is drawn from
the test set of ASVspoof 2019 LA and additional datasets.
Accordingly, it results in a comprehensive collection that
features forged speech generated by over 100 different
spoof-attack algorithms.

2) ASVspoof 2019 LA-Train-Com Dataset: In our work, we
train the teacher model on the training set in the ASVspoof 2019
LA Database. Simultaneously, we apply 6 lossy compression al-
gorithms, MP3, MP2, M4A, OGG, GSM, and Opus, to compress
this Database to obtain the compressed versions for training the
student model.

3) Other Datasets: To evaluate the generalization perfor-
mance of our proposed model, we conducted cross-database
testing on three datasets: in_the_wild [4], FOR [59], and wave-
fake [60]. All the data sets have been compressed using six
known compression algorithms from the training set (MP3,
MP2, M4A, OGG, GSM, and Opus) and four unknown com-
pression algorithms (DTS, AC3, WMA, and RA).
� in_the_wild: The in_the_wild dataset comprises only the

test set, consisting of 37.9 hours of found audio recordings
of celebrities and politicians, of which 17.2 hours are
deepfakes. Genuine speech was collected from materials in
real environments such as podcasts and speeches. Forged
speech was created by segmenting 219 publicly available
video and audio files that were explicitly promoted as audio
deepfakes.

� FOR: The FOR dataset contains more than 198,000 ut-
terances from the latest deep-learning speech synthesizers
as well as real speech. The dataset includes four different
subsets, and we use the “for-2seconds” subset to test our
proposed model. In this subset, all the speech segments
are 2 seconds in duration. This dataset contains more than
198,000 utterances from the latest deep-learning speech
synthesizers as well as real speech.

� wavefake: The wavefake dataset consists of 117,985 syn-
thetic audio files, totaling approximately 196 hours of
synthetic audio. These audio files are generated by six
different speech synthesis models trained in two languages.
The dataset exclusively contains generated audio and does
not include any real audio. Additionally, the dataset is
not divided into training, validation, and test sets. We
have selected 10,000 speech samples from this dataset for
testing.

C. Experimental Settings and Metrics

In our experiments, we use the Adam optimizer with
β1 = 0.9, β2 = 0.999, ε = 10−8 and weight decay 10−4. We
set the learning rate to 10−6 and the batch size to 10, with
each model trained for 30 epochs. Additionally, each model was
trained and tested in three rounds, with the final experimental
results being the average of these three tests. For the feature ex-
traction model, we selected the pre-trained XLS-R with param-
eter 0.3B. Our hyperparameter settings are λfreq = 0.1, αtime =
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TABLE IV
EXPERIMENTAL RESULTS OF OUR PROPOSED METHOD AND OTHER FIVE

DIFFERENT BASELINE APPROACHES ON ASVSPOOF 2021 DF DATASET

100, βtime = 50, γ = 1, η = 1,Δ = 0.012. Regarding λ, we de-
termine an optimal value through experiments.

We use two metrics: the default minimum tandem detec-
tion cost function (min t-DCF) [61] and the equal error rate
(EER). The min t-DCF demonstrates the impact of spoofing and
spoofing detection systems on the performance of an automatic
speaker verification system, while the EER reflects the purely
independent spoofing detection performance. The equal error
rate (EER) is the rate at which the false rejection rate and false
acceptance rate are equal; the smaller the EER, the better the
model’s detection performance. The EER is defined as follows:

Pfa(θ) =
#{fake trials with score > θ}

#{total fake trials} (14)

Pmiss(θ) =
#{genuine trials with score < θ}

#{total genuine trials} (15)

EER = Pfa(θ) = Pmiss(θ) (16)

where Pfa(θ) and Pmiss(θ) denote the false alarm and miss rates
at threshold θ .

V. RESULTS AND DISCUSSION

A. Comparison With Other Deepfake Detection Systems

Firstly, we evaluated our proposed frequency-time domain
distillation model on the ASVspoof 2021 DF Database, and
the results are shown in the last row of Table IV. Our model
achieved an EER of 2.82% on the ASVspoof 2021 DF Database,
which is the most competitive result we have known so far on
the ASVspoof 2021 DF Database.

The FKD also employed a knowledge distillation model,
but its performance on the ASVspoof 2021 DF dataset was
unsatisfactory. The third and fourth rows in Table IV, repre-
senting the baseline STC Antispoofing Systems and Pindrop
Labs’ Submission, are models submitted by the first and second-
place contestants in the ASVspoof 2021 DF track. Since the
ASVspoof 2021 DF Database was proposed by the ASVspoof
2021 competition, we chose these two models for comparison.
The STC Antispoofing Systems and Pindrop Labs’ Submission

TABLE V
EXPERIMENTAL RESULTS OF OUR PROPOSED METHOD AND OTHER THREE

DIFFERENT BASELINE APPROACHES ON ASVSPOOF 2019 LA DATASET,
ASVSPOOF 2021 LA AND ASVSPOOF 2021 DF DATASET

systems used five compression algorithms (SBC, MP3, M4A,
Opus, Vorbis) and two compression algorithms (MP3, M4A)
respectively, to augment the training data. From the results, it
can be observed that our model reduced the EER by 13.23% and
12.82% compared to these two award-winning models which
also used data augmentation, demonstrating the effectiveness
of our proposed method. Furthermore, we compared our model
to LLGF+XLS-R, AASIST-XLS-R, and ATT_resnet18+XLS-
R+Logmet, which also utilize XLS-R as the pre-trained model
for speech feature extraction. The results, as shown in Table IV,
indicate that these three models achieved EERs of 6.10%, 5.34%,
and 4.57%, respectively. Compared to the baseline models in
rows two and three of Table IV, it is evident that using XLS-R
pre-trained model for speech feature extraction indeed improves
the performance of spoofed speech detection. However, in com-
parison to the results of our model, their performance is slightly
inferior. This indicates that our proposed frequency-time domain
distillation model is competitive.

Based on the design of the ASVspoof 2021 DF dataset,
our chosen comparative methods are exclusively trained on the
ASVspoof 2019 LA dataset (high-quality dataset) and tested
on the ASVspoof 2021 DF dataset (low-quality compression
dataset). To further substantiate the effectiveness of our ap-
proach, we trained the ATT ResNet18+XLS-R+Logmet model
and the AASIST+XLS-R model using both the high-quality
dataset and the compressed dataset (ASVspoof 2019 LA-train-
com dataset and ASVspoof 2019 LA-train dataset). As shown
in Table IV, the EERs were 3.72% and 3.21% for the sixth
and eighth rows respectively. Both models achieved improved
detection performance compared to models trained without data
augmentation, indicating that incorporating compressed data en-
hances model robustness. Compared to the above experiments,
our proposed method achieves the lowest EER, further indicating
that the superior performance of our model is not only due to
data augmentation but also due to our overall model design, such
as the distillation approach.

Furthermore, we evaluated our model on the ASVspoof 2019
LA database, and the results, as shown in the last row of Table V,
indicate an EER of 0.30% and a min t-DCF of 0.0098. This
demonstrates that our model not only achieved state-of-the-art
(SOTA) results on the ASVspoof 2021 DF dataset but also
came very close to the SOTA on the ASVspoof 2019 LA
Database. Additionally, we selected three models, RawNet, AA-
SIST, and Dual-Branch Network, which have shown relatively
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TABLE VI
THE EXPERIMENTAL RESULTS OF OUR PROPOSED MODEL ON FOUR DIFFERENT DATASETS

good performance on the 19_LA dataset over the past two
years, with EERs of 1.12%, 0.83%, and 0.80%, respectively.
We evaluated these three models on the ASVspool 2021 DF
dataset, and the results are shown in Table V, indicate a sharp
decline in their detection performance, with EERs of 24.32%,
19.77%, and 30.28%. This highlights the challenge in the current
field of spoofed speech detection where models designed for
high-quality data often struggle to effectively detect low-quality
data. However, our frequency-time domain model effectively
addresses this issue and achieves near SOTA performance on
both high-quality and low-quality data.

We also evaluated our model on the ASVspoof 2021 LA
dataset and the results are shown in Table V. From the experi-
mental results, we can see that our proposed method also has a
positive effect on the 21 LA dataset (both the data in the tele-
phony scenario). The reasons for this we analyze are as follows:
First, the two compression algorithms used in our training data
are the same as the two coding and decoding methods in the
21 LA dataset, so it improves the detection performance on the
21 LA dataset. Second, the spoofing algorithms in the 21 LA
dataset are consistent with those in the 19 LA eval dataset. Since
our model was trained on the 19 LA training set and showed
excellent detection performance on the 19 LA eval set, it is also
effective in detecting the 21 LA dataset.

B. Cross-Database Experiments

To assess the generalization of our model, we conducted tests
on four different datasets, and the experimental results are shown
in Table VI. As there is currently only one compressed dataset,
ASVspoof 2021 DF, and our model’s primary aim is to improve
the detection performance of compressed data, we compressed
the data of ASVspoof 2019 LA eval, In_the_wild, for-2seconds
and WAVfake to get four new compressed datasets. Furthermore,
to assess the robustness of our model, when compressing these
four datasets, in addition to using the six known compression
algorithms from the training dataset, we also introduced four
unknown compression algorithms.

In Table VI, columns two to four represent the detection
results without distillation modules, while columns five to seven
show the detection results with distillation modules. The second
and fifth column displays the results on the entire test dataset, the
third and sixth column represents the results on data compressed
using the six known compression algorithms, and the fourth and
seventh column displays the results on data compressed using

the four unknown compression algorithms. It’s worth noting that
in the WAVfake dataset, there are only synthetic voices and no
real voices. Therefore, EER cannot be used as the evaluation
metric for this dataset. In this case, accuracy (ACC) is used as
the evaluation metric.

From Table VI, it is evident that our model’s performance
improves to some extent after adding distillation modules on
all four different datasets. Additionally, when processing data
compressed using unknown algorithms, the detection perfor-
mance of our model decreases, which is due to the fact that
the model has not seen these unknown compression algorithms
during the training phase, and is also related to the model’s adapt-
ability to specific compression algorithms. However, the degree
of performance degradation on data compressed by unknown
algorithms is not significant, revealing that our model possesses
a certain degree of generalization capability when facing unseen
compression methods. Nevertheless, this generalization is still
insufficient, and we will explore strategies for further improving
it in future research.

It is noteworthy that on the WAVfake-low dataset, the detec-
tion performance of data from known compression algorithms is
lower than that of data from unknown compression algorithms.
Upon careful analysis, we have found that this is due to the
poor detection performance of data compressed with the MP2
algorithm, which has lowered the overall accuracy of the known
compression algorithm dataset. The low detection performance
of MP2-compressed data in the WAVfake-low dataset may be
attributed to several factors. Firstly, the WAVfake dataset con-
sists entirely of forged speech, containing more forged artifacts.
Additionally, MP2 is an older audio compression format, which
is less efficient in terms of compression and audio quality.

C. Ablation Experiments

We studied the quantitative impact of each module of our pro-
posed model on the final result on ASVspoof 2019 LA Database
(high quality data) and ASVspoof 2021 DF Database (low
quality compressed data). The results are shown in Table VII.
We observe that, with the utilization of the feature extraction
model XLS-R, the EER on the 19_LA dataset decreases from
7.66% to 0.37%, and on the 21_DF dataset, the EER decreases
from 27.30% to 4.86%, as compared to using lfcc features. This
indicates that XLS-R, trained on large-scale speech data, exhibits
strong robustness across various types of speech. Compared to
handcrafted features like LFCC, the combination of XLS-R with
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TABLE VII
THE EER RESULTS OF THE ABLATION EXPERIMENTS FOR EACH MODULE OF

OUR PROPOSED MODEL ON THE ASVSPOOF 2019 LA DATASET AND

ASVSPOOF 2021 DF DATASET

the backend classification network enables end-to-end learning
by directly extracting feature representations from raw speech
data, thereby enhancing its adaptability for the spoofing de-
tection task. Additionally, to demonstrate that the performance
improvement of our model is not solely dependent on XLS-R, we
applied time-domain distillation and frequency-domain distilla-
tion modules to Resnet18+LFCC model. As shown in the third
row of Table VII, the results indicate that time-frequency domain
distillation also enhances the spoofing detection performance of
the Resnet18+LFCC model, further corroborating the effective-
ness of this distillation method. Moreover, in order to validate
the effect of dataset training strategy on model performance, we
trained the Resnet18+XLS-R model using three different dataset
training strategies. The results, as shown in rows four, five, and
six of Table VII, indicate that the EER on the 21_DF dataset
decreased from 4.86% to 3.66% when the model was trained
on the compressed dataset compared to the high-quality dataset.
However, the EER on the 19_lA dataset increased from 0.37%
to 0.60%. This suggests that the model has learned the feature
distribution of the compressed dataset, making it better suited to
fit the 21_DF dataset. However, due to the lack of some crucial
information in the compressed data, the detection performance
on the 19_lA dataset experiences a decline. Meanwhile, the
model trained on both the high-quality and compressed datasets
shows lower EERs on the 19_lA and 21_DF datasets compared
to the model trained solely on the high-quality dataset. This
demonstrates that combining high-quality and compressed data
enhances the model’s generalization capability.

Furthermore, the inclusion of the frequency-domain distilla-
tion or time-domain distillation modules further improved the
performance of the ResNet18+XLS-R model on both the 19_LA
and 21_DF datasets. It is clear that our proposed frequency-
domain distillation and time-domain distillation modules can
individually contribute to the spoofing detection model, improv-
ing its performance in both high and low quality data scenarios.
By simultaneously integrating both distillation modules, the
model’s performance reaches its optimal state. On the 19_LA
dataset, the EER is merely 0.30%, and on the 21_DF dataset, it is

Fig. 6. The EER results for the frequency-time domain distillation model
with different values of the time-domain distillation loss’s hyper-parameter. The
yellow line represents the results on the ASVspoof 2021 DF dataset, while the
green line represents the results on the ASVspoof 2019 LA dataset.

2.82%. The results of our ablation experiments demonstrate that
each module added to our model has a beneficial effect on the
overall forgery detection capability. In particular, the frequency
domain distillation and time domain distillation modules con-
tribute to the student model’s learning from the teacher model
in distinct ways, addressing the issue of information loss during
data compression. The integration of these two modules yields
the most optimal results.

It is worth noting here that why does the student model’s
detection performance on high-quality data improve after adding
the distillation module? We believe that by using low-quality
compressed data for distillation training, the student model not
only learns some features of compressed data, but also learns fea-
tures of high-quality data from the teacher model. This increases
the diversity of data features learned by the student model, aiding
it in better distinguishing between genuine and spoofed data,
regardless of whether it’s high-quality or low-quality data.

D. Further Analysis

Analysis of time-domain distillation weight λ: We also con-
ducted experiments on the hyper-parameter λ as mentioned
earlier, which controls time-domain distillation. Since the loss
from frequency-domain distillation is significantly larger than
that from time-domain distillation, to balance these two distil-
lation modules, we tried four different values of λ around the
LFD/LT D range. We tested their impact on the overall model
performance on the 19_LA and 21_DF datasets, and the results
are shown in the Fig 6. It can be observed that the model performs
best on the 21_DF dataset when λ is set to 520.

Applicability to different backbones: As shown in Table VIII,
we evaluated the general applicability of our time-frequency
domain knowledge distillation method using two backbone net-
works different from ResNet18. To enhance model detection
performance, we still employed XLS-R as the feature extractor.
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TABLE VIII
PERFORMANCE OF THE PROPOSED FTDKD WITH DIFFERENT BACKBONES

We trained these two networks on both the original 19_LA
training set and the original 19_LA training set augmented with
compressed data. Subsequently, we applied the time-frequency
domain knowledge distillation to both networks. The results in
Table VIII demonstrate that, for different backbone networks,
our distillation method enhances their forgery detection perfor-
mance on low-quality compressed data compared to simple data
augmentation methods. This indicates that our method is highly
applicable to various backbone networks.

VI. CONCLUSION

In this paper, we propose a deepfake audio detection model
based on frequency-time domain knowledge distillation for low-
quality compressed deepfake audio. Low-quality compressed
audio typically loses high-frequency information and time do-
main details during compression. Therefore, we propose a
knowledge distillation approach to enhance the detection per-
formance of low-quality compressed audio. Specifically, we
employ the pre-trained self-supervised audio feature extractor,
XLS-R, to extract high-quality and generalizable audio fea-
tures. We employ data distillation, training the teacher model
with high-quality data and the student model with low-quality
compressed data. This allows the student model to learn high-
frequency information and time domain details through fre-
quency and time domain distillation from the teacher model.
The experimental results on the ASVspoof 2021 DF dataset
demonstrate the high effectiveness of our proposed method
for low-quality compressed data, achieving an EER of 2.82%,
which outperforms all individual systems. Furthermore, our
approach exhibits outstanding performance on the ASVspoof
2019 LA dataset, with an EER of 0.30%, showcasing the
versatility of our model for both high-quality and low-quality
data. In the future, we will continue to explore deepfake
detection methods for different types of data in real-world
environments.
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