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Guided Erasable Adversarial Attack (GEAA)
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Abstract— In recent years, there has been increasing interest
in studying the adversarial attack, which poses potential risks
to deep learning applications and has stimulated numerous
researches, e.g. improving the robustness of deep neural net-
works. In this work, we propose a novel double-stream archi-
tecture – Guided Erasable Adversarial Attack (GEAA) – for
protecting high-quality labeled data with high commercial values
under data-sharing scenarios. GEAA contains three phases, the
double-stream adversarial attack, denoising reconstruction, and
watermark extraction. Specifically, the double-stream adversarial
attack injects erasable perturbations into the training data to
avoid database abuse. The denoising reconstruction rebuilds
the traceable denoising data from adversarial examples. The
watermark extraction recovers identity information from the
denoised data for copyright protection. Additionally, we introduce
the annealing optimization strategy to balance these phases and
a boundary constraint to degrade the availability of adversarial
examples. Through extensive experiments, we demonstrate the
effectiveness of the proposed framework in data protection.
The Pytorch® implementations of GEAA can be downloaded
from an open-source Github project https://github.com/Dlut-lab-
zmn/GEAA-for-data-protection.

Index Terms— Data protection, guided erasable adversarial
attack, double-stream adversarial attack, denoising reconstruc-
tion, watermark extraction.

I. INTRODUCTION

AS A wide range of artificial intelligence fields such as
image recognition [1], [2], semantic segmentation [3],
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Fig. 1. Data sharing mode: Data owners upload data to an untrustworthy
third party, and then, downloaders purchase the key to reconstruct data. The
unauthorized data sharing should be under the data owners’ monitoring.

and natural language processing [4] deploy machine learning
to automatically make decisions, researchers have repeatedly
highlighted the significance of understanding potential vulner-
abilities in machine learning, including model vulnerabilities,
data credibilities, and data missing [5], [6]. Additionally, the
powerful autonomous learning ability of Deep Neural Net-
works (DNNs) induces data dependence of DNNs. Therefore,
researchers take amounts of time to construct high-quality
labeled data. However, not all datasets are freely available to
all researchers like ImageNet [7]. Databases that are highly
beneficial for business applications are facing data protection
issues.

This work focuses on protecting data in the practical
data-sharing scene. We denote this scene as a Protect-
Reconstruct-Identify (PRI) process. P: Data owners upload
data to the internet, but meanwhile they want to protect
data from unauthorized use. R: The data owners transmit the
key to downloaders when two parties reach an agreement to
reconstruct the data distribution. During this process, the iden-
tification information is embedded in the reconstruction data to
prevent unauthorized sharing. Noteworthily, downloaders will
not actively embed identification information to reconstructed
data. I: The extracted identification information is used to
verify leakers when illegal data sharing occurs. Related figure
descriptions are represented in Fig. 1. Such a process faces
two crucial security issues, (1) In the view of data owners,
they upload data to third parties for the convenience of trans-
missions, such as google drive or Kaggle. However, unknown
third parties may induce data leakage issues, data tamper-
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Fig. 2. Proposed GEAA framework, including the double-stream adversarial attack, denoising reconstruction, and watermark extraction. Each sub-task solves
one problem mentioned in Fig. 1, namely, the threat of untrustworthy third parties, the network underfitting when training network on the denoised data, and
the malicious data sharing.

ing issues, and unsanctioned data misuse issues. (2) Also,
a potential issue – non-authoritative key sharing by authorized
downloaders, should be concerned, including the case of leak-
ing parts of reconstructed data. Induced by these issues, the
core competitiveness of data protection under the data-sharing
scene includes, (1) Uploaded data (after processing) should
be well protected, observable but not available for training.
(2) The original data could be reconstructed from uploaded
data for normal use with authorization. (3) The reconstruction
process could embed identification information for tracing the
source of the leaked data. In this way, the data owners and
authorized downloaders only need to share the reconstruction
module (unique for each authorized downloader) as a key in
advance.

Since there are no fully efficient solutions for mentioned
problems, only previous inductive works are introduced. For
instance, recent efforts consider injecting perturbations into the
training dataset [8], in which trained networks predict bias for
inputs [9]. Such technologies, strictly speaking, are harmful to
users but are beneficial tools for data owners to protect their
core competitiveness. The prerequisite is that the problems of
data obfuscation (see details in Fig. 2) and model under-fitting
can be processed without access to the original data distri-
bution. In addition, Jia et.al [10] attack DNNs by adding
watermarks into clean images. Zhang et.al [11] take advantage
of reversible data hiding to construct reversible adversarial
examples. Meanwhile, they propose the reversible adversar-
ial attack based on reversible image transformation [12].
These methods are based on existing adversarial attacks and
reversible data hiding technologies. However, we have verified
by experiments that networks trained with adversarial exam-
ples (generated by existing attacks, e.g. PGD [13], BIM [14])
show a high generalization performance, which indicates a
poor data protection performance.

To tackle these problems, we propose a newly designed
double-stream architecture – Guided Erasable Adversarial
Attack (GEAA) – for protecting data [15] under data-sharing
scenarios. The detailed procedures of GEAA are illustrated
in Fig. 2. GEAA contains several core competitive ele-
ments. The double-stream adversarial attacks take into account
unknown threats from untrusted third parties. Denoising recon-
struction avoids network underfitting when reconstructing the
data distribution. Watermark extraction solves the problem
of malicious data sharing by users who have purchased
the data.

Specifically, the double-stream adversarial attack module
aims to degrade the availability of databases by disrupting
the initial training data distribution. Data owners inject ‘non-
extractable diverse perturbations’ into all samples in the train-
ing set and upload these adversarial examples to third parties.
In this way, downloaders cannot deduce injected perturbations
from the perturbed data and manually eliminate them. Upload-
ing perturbed data is for viewing only, addressing issues that
third parties cannot trust, namely, data leakage and unsanc-
tioned data misuse. Visualizing data helps users understand
the specific information of the dataset. The data tampering
issue could be detected by comparing the local data with
downloaded data.

The denoising reconstruction module consists of two
actions, data distribution reconstruction, and watermark
embedding. The annealing optimization strategy is introduced
for reconstructing the training data distribution while main-
taining the mismatching ratio of the training-testing dataset
distribution. Besides, a series of distinctive watermark features
are embedded into the extracted transfer features as identifying
information. After the training process, data owners transmit
the denoising reconstruction modules (unique for each user)
to authorized data users. The watermark features embedded
in each denoising reconstruction module are unique. Note-
worthily, since the denoising reconstruction module is adopted
as the key, only perturbed data is available in constructing the
original data distribution.

The watermark extraction module deduces watermark fea-
tures from denoised data by a unified network, namely, mul-
tiple embedding-single extraction. In this way, data owners
could trace users who maliciously spread data according to
leaked data ( or download links) on the website.

In summary, the contributions of this paper are as follows:
(1) To the best of our knowledge, we are the first to con-
sider shared data protection scenarios under the adversarial
attack and the multiple embedding-single extraction algorithm.
(2) An elaborate double-stream architecture – the guided
erasable adversarial attack, is designed for shared data pro-
tection, including double-streamed adversarial attack, denois-
ing reconstruction, and watermark extraction. (3) A boundary
constraint strategy and an annealing optimization strategy are
proposed for training the GEAA. (4) Extensive experiments
on several benchmark datasets and excellent classification
networks demonstrate the effectiveness of GEAA in data
protection.
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II. RELATED WORK

In this section, we will first introduce security related
technologies and then summarize existing adversarial
attacks.

Security issues are always related to cyberspace, and media
copyright. Media copyright protection such as watermark
embedding technology has been highlighted [16], [17] for
its importance and has attracted the attention of researchers
for many years. Watermark-based media copyright protec-
tion methods can be split into two diverse classes according
to the watermark property: visible watermark and invisible
watermark [18]. The visible watermarks cause data availabil-
ity to decline since they impact the valid message. In con-
trast, invisible watermark embedding technologies only mod-
ify a small amount of data information and belong to the
passive forensic, that is, to guard the copyright by leaked
data. For cyberspace security, Addesso et.al [19] designed
the ADVoIP to detect the manipulated Voice-over-IP (VoIP)
traffic streams from an adversarial perspective. Then, they [20]
also regarded propagation of cyber-threats over networks under
an adversarial formulation as zero-sum games involving two
adversaries.

Adversarial attacks [5], [21] aimed at deceiving well-trained
DNNs, both specified models in the white-box attack and
unknown models in the black-box attack [22]. Researchers
crafted adversarial examples by adding tiny adversarial pertur-
bations. Initial adversarial attacks were based on the gradient-
backward. For instance, the Fast Gradient Sign Method
(FGSM) [23] generated adversarial examples by a single-step
gradient update. The Basic Iteration Method (BIM) [14]
reduced the single-step perturbation and generated adversar-
ial examples by multiple iterations. Additionally, researchers
introduced several special attack methods. The universal
attack [24] intentionally designed a universal perturbation
that was available for all inputs, which strongly saved the
time consumption in generating adversarial examples. One
Pixel Attack [25] can be seen as an extreme attack situ-
ation, in which only one pixel in each sample was mod-
ified to deceive the target model. Specifically, researchers
adopted differential evolution to find optimal pixel locations
and values. [26] proposed to add bigger perturbations to
realize the adversarial attack. Researchers introduced the tex-
ture transfer model and the colorization model. It is novel
that changing the color of clean samples leads to misclas-
sification. To improve the generalization performance of the
attack, Sarkar et al. [27] designed the UPSET and ANGRI
networks to generate adversarial examples by attacking multi-
ple classifiers. Subsequently, the Carlini and Wagner (C&W)
attack [28] solved the problem of obfuscated gradients by
optimization strategies. Yin et.al [12] proposed the reversible
adversarial example by embedding reversible watermarks into
the benign sample. Experiments illustrated that reversible
watermark attacks were comparable with common adversarial
attacks.

Additionally, adversarial attacks were introduced to various
fields such as the attack for semantic segmentation and object
detection [29], the black-box attack for audio systems [30] and

TABLE I

DEFINITIONS OF SEVERAL SYMBOLS THAT
ARE USED TO DESCRIBE GEAA

the attack for image-captioning models [31], [32]. For audio
attack, [33] generated selective audio adversarial examples
that will be misclassified as the target phrase by the victim
classifier but correctly classified as the original phrase by the
protected classifier. Sonal et.al [34] introduced pre-processing
defenses against adversarial attacks on speaker recognition
systems. [35], [36] enhanced image steganography based on
the adversarial embedding.

III. PROPOSED APPROACH

In this section, we first define the algorithm context
and the target problem formally in Section III-A, and then
provide the detailed theoretical analysis, with descriptions
shown in Fig. 3, of how the data distribution is disrupted
in Section III-B and how the denoising module reconstructs
the original data distribution in Section III-C. Additionally,
Section III-D includes the research for extracting invisible
inserted watermarks through the watermark extraction module.
Finally, we show the joint optimization constraint and how
to construct an annealing optimization strategy to facilitate
the module training in Section III-E. Definitions of several
symbols are provided in Table I.

A. Problem Definition

We have illustrated core security concerns of the work in
Section I, including data leakage issues, data tampering issues,
and unsanctioned data misuse issues. Towards these issues,
we propose a Guided Erasable Adversarial Attack (GEAA)
under data sharing scenarios.

Given a newly collected database D = {(Ii ,Li ) | i ∈ [1, n]}
to be protected, n is the the number of samples in D, GEAA is
split into following substeps. (1) Obtain perturbed dataset D+
= {(I+

i ,Li ) | i ∈ [1, n]} by injecting mixed perturbations into
training data based on the double-stream adversarial attack.
(2) Train various denoisers for denoising reconstruction. The
denoised database is named as D∗ = {(I∗

i ,Li ) | i ∈ [1, n]}
(3) Recover particular watermark information from the leaked
data (denoised data) for data protection using a universal
reconstruction module. In particular, perturbed dataset D+ is
uploaded into third parties for the convenience of transmis-
sions. The trained denoisers are transmitted to downloaders
who have purchased the key (specific to each user).
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Fig. 3. Proposed double-stream architecture. GEAA includes the double-streamed adversarial attack module to generate perturbed data for the uploader to
transmit, the denoising reconstruction module to build denoised data for the downloader to use, and the watermark extraction module to verify leaked data.
IA and IB represent two types of benign samples from different categories. I+

A and I+
B denote the generated perturbed samples under the supervision of

the target of IB or IA. I∗
A (I∗

B) means the denoised samples with embedded watermarks based on the perturbed data I+
A (I+

B ).

B. Double-Streamed Adversarial Attack

This subsection first introduces previous adversarial attacks
and then describe the detail of the double-stream adversarial
attack.

The typical adversarial attacks are closely correlated with
the specific machine learning model. However, the limited
knowledge derived from the dataset cannot cover all scenarios
of the real world, inducing the forecast bias. Researchers
take advantage of these ‘knowledge blind zones’ to mislead
well-trained models by adding subtle invisible perturbations to
benign samples under the guidance of the constraint gradient.
Specifically, given a set of clean samples I and the ground
truth labels L, attackers feed I into the trained model to obtain
corresponding logical probabilities O. The specific formula for
the adversarial attack is as follows,

Ii+1
+ = Ii

+ + ε · sign(∇I+
i
Loss(O,L)) (1)

where i means i th attack, Ii
+ represents generated adversarial

examples in i th attack, Loss denotes the cross entropy loss
function, and ∇I+

i
Loss(O,L) calculates the gradient update

direction.
We demonstrate in Fig. 2 that the attack in GEAA aims at

interrupting the identical distribution between the training set
and testing set. In this way, DNNs cannot distinguish various
categories after training on perturbed training data. Therefore,
similar to the common adversarial attacks, we first construct
initial data distributions based on the proven efficient net-
work structure Mnet and clean samples (Ii ,Li ). Specifically,
we optimize the network weights θMnet based on the following
formula.

min
θMnet

− ln �P (
Li | Mnet (Ii , θMnet )

)
(2)

where Mnet (Ii , θMnet ) represents the predicted probability dis-
tribution of the Mnet for the input Ii . �P(Li | Mnet (Ii , θMnet )
stands for the probability that Ii is predicted as Li .

Then, we intentionally disrupt the training data distribution
by transferring the sample into other data distribution domains.
Towards this end, we separate the training set into two cat-
egories, A and B, and present the double-stream adversarial
attack network. Due to the paired inputs of the double-stream
adversarial attack network, we expect an equal number of
samples in Ai (Ai ∈ A) and Bi (Bi ∈ B). For unbalanced
datasets, we use min

∑
i,i∈[1,N/2] abs(len(Ai) − len(Bi )) to

select categories to A and B. N and len(·) calculate the
number of categories and samples for each category. For
balanced datasets, we select top- N

2 categories as A and the
rest as B. We do not further study the division of A and B,
since the inter-embedding performance of various categories is
different among different datasets. The challenge that allocates
best-matching category pairs to the dataset should consider the
semantic similarity, visual features similarity, effective visual
pixel ratio, and so on.

Next, randomly selected samples IA, IB from categories A
and B are adopted as inputs of the feature extraction network
Fnet . The feature aggregation network Jnet extracts distribu-
tion transfer perturbations by combining features specific to
samples IA, IB. Finally, LIB and LIA are used as the target
mapping of IA and IB. The formula description is as follows:

TIA = Jnet−A(< Fnet (IA, θF ); Fnet (IB, θF ) >, θJ )

min
θF ,θJ

Lossm = Loss{LIA | Mnet (IB + TIA), θF , θJ , θMnet }
(3)

where θF , θJ are network weights of Fnet and Jnet in the
double-stream adversarial attack module, TIA and TIB are
the distribution transfer perturbations for IB and IA, and
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<; > denotes the feature concatenation. θMnet is fixed in
the double-stream adversarial attack process. The perturbed
samples deviate from the original samples as the model opti-
mization, and as a result, the identical distribution of the
training-testing dataset is broken.

To better disrupt the consistency of the training-testing
distribution and maintain the inter-dataset distribution balance,
we introduce the boundary constraint. This constraint helps
the double-stream adversarial attacks generate more effective
disturbances than conventional attacks.

max
θF ,θJ

Lossb = min{min{‖TIA‖1, ‖TIB‖1}, MIN}
− max{abs(‖TIA‖1 − ‖TIB‖1), MAX} (4)

where MIN represents the lower boundary constraint for trans-
fer perturbations, MAX limits the differences in the transfer
perturbations between datasets.

C. Denoising Reconstruction

In contrast to the double-streamed adversarial attack, the
denoising reconstruction task aims to remove perturbations
from the perturbed data I+. The denoising reconstruction
contains two actions, (1) Reconstruct the data distribution
(denoised samples, named I∗) from the perturbed dataset I+;
(2) Embed the designated watermarks into denoised samples,
where the designated watermarks are utilized to guard data
copyright.

We also utilize the double-stream network to extract per-
turbations embedded in the perturbed data. The related figure
descriptions are given in the second section of Fig. 3. The
formula description is given as,

T ∗
IA/IB = J∗

net−A/B(< F∗
net (I+

A, θ∗
F ); F∗

net (I+
B , θ∗

F ) >, θ∗
J )

(5)

where I+
A = IA + TIB and I+

B = IB + TIA , F∗
net and J∗

net
denotes the feature extraction network and feature aggrega-
tion network in the denoising reconstruction module. Next,
we select the constraint for updating the θ∗

F and θ∗
J .

Different from conventional image reconstruction tasks [37],
we find that the surrogate perceptual distance – learned per-
ceptual image patch similarity (LPIPS) [38] – is not effec-
tive in the data protection mode even it correlates well
with human perception. The denoised data generated by the
LPIPS-supervised reconstruction module contains recognition
information, causing the trained model to underfit. That is, the
remaining information in the denoised samples leads to a fast
training convergence, and as a result, the denoised data-trained
network exhibits poor generalization performance. Therefore,
we adopt the L2-norm constraint between the perturbations
< T ∗

IA; T ∗
IB > extracted by the denoising reconstruction

module and the embedded perturbations < TIA; TIB > as
the reconstruction loss.

min
θ∗

F ,θ∗
J

Lossr = ‖TIA − T ∗
IA‖2 + ‖TIB − T ∗

IB‖2 (6)

Additionally, the designated watermark features are embed-
ded in the denoised samples. Thus, Eq. (5) is modified

as Eq. (7).

F = < F∗
net (I+

A, θ∗
F ); F∗

net (I+
B , θ∗

F ); Fw1; Fw2 >

T ∗
IA/IB = J∗

net−A/B(F, θ∗
J ) (7)

where Fw1 and Fw2 denote the embedded watermark features
extracted by a double convolution layer (without the batch
normalization layer) for the denoised data and the original
data, respectively.

However, the single embedding-extraction method cannot
distinguish the concrete user identity, and thus, we intro-
duce the multiple embedding-single extraction mode. For the
multiple-embbeding, identity card Fw1 is randomly selected
from a set of recognizable watermarks ID in the module
training process but is fixed in the validation process.

min
θ∗

F ,θ∗
J

Lossr = ‖TIA − T ∗
IA‖2 + ‖TIB − T ∗

IB‖2, Fw1 ∈ ID

(8)

In this way, the data owners could construct a series of
denoising reconstruction modules but only transmit a specific
denoising reconstruction module to a potential user. For the
single-extraction, we extract all embedded identification infor-
mation from the generic model and single input.

Here we explain why we insert watermarks in denoised
data instead of perturbed data. In fact, GEAA contains four
steps, including the double-stream adversarial attack, denois-
ing reconstruction, watermark embedding, and watermark
extraction. Considering that the watermark embedding affects
the performance of the double-stream adversarial attack and
denoising reconstruction, we insert watermarks into data after
the denoising reconstruction module. After that, we incorpo-
rate the denoising reconstruction and the watermark embed-
ding as a unified network. The integrated denoising reconstruc-
tion module more robustly embeds identifying information
than separate denoising reconstruction and watermarking, e.g.
manually removing the watermarking process.

D. Watermark Extraction

We experimentally discovered that the simple U-net [39] is
efficient in accurately extracting embedded watermarks. All
embedded identity information are extracted through a trained
U-net, namely, single extraction. To obtain recovered water-
marks, we feed outputs of the U-net into the sigmoid function
σ(·). The binary outputs of the sigmoid function and the
standard watermarks are adopted to measure the reconstruction
difference.

min
θU

Lossw = ‖σ(U-net(S, θU )) − w‖2 (9)

where S includes both benign samples I and denoised samples
I∗, and w contains w1 and w2. w1 and w2 are the pre-defined
watermarks for the denoised samples and benign samples.
We only select a series of simple watermarks, as they are
sufficient to identify the source of the leaked data. Fig. 6 illus-
trates several watermark examples. We select words, letters of
an alphabet, digits, or signs as w1. For w2, we adopt the blank
watermark as it.
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E. Optimization Goal

In above sections, we have explained in detail the newly
designed GEAA framework. Next, we will show how to
combine the proposed submodules and jointly optimize them.

As shown in Fig. 3, GEAA contains three modules, and
we feed the outputs of the current module as the inputs of
the subsequent module. Following, we optimize all network
parameters together. To balance the double-streamed adver-
sarial attack and the denoising reconstruction, we introduce
the annealing optimization technique. That is, we first set a
high temperature T in the regression process so that perturbed
data can effectively map into the randomly selected target data
distribution region. Then, the annealing optimization gradually
reduces the constraint degree on the double-stream adversarial
attack and pays more attention to the denoising reconstruction.
In this way, GEAA successfully achieves both high adversarial
attack performance and denoising reconstruction performance.

min
θF ,θJ ,θ∗

F ,θ∗
J

Lossr + min{−Lossm,s, Ts }, Ts ∈ T (10)

T is the set of temperatures, and s is the optimization stride.
Moreover, considering the uncertainty of the multi-

embedding, we dynamically separate the watermark extraction
constraint Lossw from the double-stream adversarial attack
Lossm and denoising reconstruction Lossr . Towards this end,
we adopt the sigmoid output of the watermark extraction
module and standard watermarks w to calculate the average
value of the Watermark Extraction Accuracy (WEA).

WEA(Si ) = |
∑

abs(σ (U-net(Si , θU ))) −
∑

abs(w)| < 1

WEA = ∀Si∈S
∑

WEA(Si )

len(S)
(11)

where S includes both benign samples I and denoised samples
I∗, and w contains w1 and w2. On this basis, the watermark
extraction difference is modified as

min
θU

Lossw,WEA = (1 − WEA) · Lossw (12)

Namely, the watermark extraction constraint decreases with
the increase of WEA.

Combining the boundary constraint Lossb that disrupts
the data distribution and the watermark extraction loss
Lossw,WEA, the ultimate optimization loss is given by

min
θF ,θJ ,θ∗

F ,θ∗
J ,θU

LossSum = Lossr + Lossb + Lossw,WEA

+ min{−Lossm,s , Ts}, Ts ∈ T (13)

IV. EXPERIMENTS

To demonstrate the effectiveness of the proposed system,
the results of both qualitative and quantitative experiments are
given in this section. We first illustrate the implementation
details and evaluation metrics of GEAA in Section IV-A.
Next, we present the data protection performance of GEAA
on several standard datasets quantitatively and qualitatively
in Section IV-B. Section IV-C and Section IV-D display the
influence of Mnet and the distribution accuracy on GEAA.
Similarly, we compare the variation in GEAA under different

Fig. 4. Visual results of the generated perturbed data and denoised data
(MIN = 30, temperature = 0.9). ORI, PRO and ADV denote the original
image, the denoised sample and the perturbed sample. The left and right
samples come from A and B respectively.

Fig. 5. Visual results of the generated perturbed data and denoised data
(MIN = 10, temperature = 0.9). ORI, PRO and ADV denote the original
image, the denoised sample and the perturbed sample. The left and right
samples come from A and B respectively.

hyperparameter settings, including various lower boundary
constraints and temperatures, in Section IV-E. Section IV-F
gives the comparison of GEAA with existing attacks. Finally,
ablation analyses for multi embedding - single extraction are
provided in Section IV-G.

A. Experimental Setup

1) Models and Dataset Setup: In this section, we evaluate
the data protection performance of the proposed GEAA on
several popular classification models, including ResNet [40],
VGG [41], MobileNet [42], and DenseNet [43]. Three
benchmark datasets are applied in our experiments: (1).
CIFAR10 [44]: The CIFAR10 dataset contains 60000 RGB
images with a size of 32 × 32 and is classified into 10 cat-
egories. A total of 50000 images are selected as the training
set, and the remaining 10000 images are used as the testing
set. (2). Fashion MNIST [45]: The Fashion-MNIST dataset
is an open set that was proposed to replace the MNIST
handwritten digit set. This set covers 70000 different images
from 10 categories, with a 60000/10000 training and test data
division and 28 × 28 greyscale images. (3). SVHN [46]: The
Street View House Numbers Dataset is a real-world image
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TABLE II

QUANTITATIVE RESULTS OF THE PROPOSED GEAA ALGORITHM (MIN = 10, T = 0.9). THE FIRST LINE DENOTES THE CLASSIFICATION ACCURACY

OF THE MODELS TRAINED ON THE NORMAL TRAINING SET. PERTURBATION IS CALCULATED BY Noise(I+,I), AND RECONSTRUCTION IS

CALCULATED BY Noise(I∗,I). PSNR DENOTES PEAK SIGNAL TO NOISE RATIO

dataset that contains 73257 digits for training, 26032 digits
for testing, and 531131 additional digits. All of the digits are
RGB images with a size of 32 × 32. It is important to note
that many images in the dataset do contain some distractors
on the sides.

2) Training Details: By default, we train the classification
network Mnet for 200 epochs with a batch size of 128.
Adam optimizer is adopted with an initial learning rate of 0.1.
We decay the learning rate by 90% after 50 epochs. Mean-
while, for the GEAA framework, we train it for 15 phases,
and each phase contains 30 epochs with a batch size of 100.
At the beginning of each phase, we reset the initial learning
rate to 0.0001 and decay it by 0.5 after 10 epochs. All of the
experiments are performed on a Nvidia GTX 1080 Ti GPU.
Unless stated otherwise, we set MIN to 10 and T to 0.9.

3) Evaluation Metrics: To evaluate the performance of
GEAA, we introduce the Data Protection Rate (DPR). We use
�P− �P+

�P to measure the degree of data disturbance and �P∗
�P to

measure the degree of data fidelity, where �P , �P+ and �P∗
denote the classification accuracy trained on the original data,
the perturbed data, and the denoised data. Based on these
indicators, we define the DPR as follows:

DPR = 1

len(�)

∑

i∈�

�Pi − �P+
i

�Pi
· (2

(
�P∗
i�Pi

)2

− 1) (14)

where len(�) denotes the number of models used in the eval-
uation process. In fact, DPR deliberately increases the propor-
tion of data fidelity, which means that we pay more attention to
data reconstruction tasks rather than data disturbance degrees.
Namely, the ultimate intention of data protection is to decrease
the classification accuracy trained on the perturbed data while
not affecting the normal classification accuracy as much as

possible. In addition, we adopt the average value WEA to
measure the source-identifying performance.

The Noise is calculated by the L2-norm function, namely,
Noise(I1,I2) = ‖ I1 − I2 ‖2.

Runtime We calculate the runtime on the CIFAR10 dataset.
The training stage takes 4.5 hours (15 phases and each phase
contains 30 epochs, batch_size = 100) and the prediction
stage takes 8.76s (50000 samples, batch_size = 100). Fur-
thermore, we also provide the runtimes of each submodule
of GEAA in the prediction stage. We only calculate the
forward-propagation time of each submodule. The double-
stream adversarial attack, denoising reconstruction, and water-
mark extraction modules take 1.224s, 1.622s, and 2.361s,
respectively. Therefore, a single forward propagation for the
three submodules takes 0.0049, 0.0065, and 0.0095s.

B. Data Protection Performance of GEAA

In this section, we provide both qualitative and quantitative
results to show the performance of the proposed GEAA.
By default, we adopt ResNet as the target model Mnet to
understand the data distribution and verify the network perfor-
mance on the CIFAR10 dataset. Five categories are selected
from the dataset, denoted as A, and the remaining categories
are denoted as B. Considering that users may manually remove
perturbed data from the dataset, we inject perturbations into
all samples in the training set. The perturbed data and the
denoised data generated by the trained GEAA are gathered into
local servers. Then, we train classification models mentioned
above on stored data. Quantitative results, including the DPR
and WEA, are provided in Table II. Table II also contains
several lists of experiment results in different phases, helping
potential readers understand how the double-stream adversarial
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TABLE III

QUANTITATIVE RESULTS OF THE PROPOSED GEAA ALGORITHM WITH VARIOUS DATA DISTRIBUTION MODELS ON THE CIFAR10 DATASET (MIN = 10,
T = 0.9). THE DIGITS (*) DENOTE THE CLASSIFICATION ACCURACY OF THE MODELS TRAINED ON THE NORMAL TRAINING SET. PERTURBATION

IS CALCULATED BY Noise(I+,I), AND RECONSTRUCTION IS CALCULATED BY Noise(I∗,I). PSNR DENOTES PEAK

SIGNAL TO NOISE RATIO

Fig. 6. Visual results of the watermark. The first line represents the original watermarks, and the second line is the reconstructed watermarks. We adopt the
blank watermark as w2 and other watermarks as w1. w1 includes words, letters of an alphabet, digits, or signs. w1 and w2 are the pre-defined watermarks
for the denoised samples and benign samples.

attack and denoising reconstruction affect each other. More-
over, not all these datasets obtain the optimal performance by
setting the final training phase to 15.

It is observed that the proposed GEAA not only inserts
perturbations into clean samples, thereby preventing the shared
data from training the model but also successfully recovers the
initial data distribution from the perturbed data in the water-
mark embedding way. For instance, the classification accuracy
of ResNet trained on the perturbed data decreases by 31%
than trained on normal data, from 88.89% to 61.35%, whereas
the classification accuracy of the ResNet model trained on
the reconstructed data only decreases by 0.4%. Both the
denoising reconstruction noise and double-stream adversarial
attack noise decrease as the training phase advances, leading
to classification accuracy improvement of the model trained
on both kinds of data.

Additionally, we observe that the average difference
between the watermarked images I∗ and watermark-free
images I in the last phase is less than 0.005 (normalized
image), confirming that the high image quality (The average
PSNR between reconstructed images and benign images is
greater than 52dB.) is well preserved in the reconstruction
process. Meanwhile, results demonstrate that even tiny recon-
struction difference can hide enough watermark identification
information, i.e. the WEA is greater than 95%. We provide
several visual results of the reconstructed watermark in Fig. 6.

To better illustrate how the double-stream adversarial attack
affects the network transferability, we provide several per-
turbed examples in Fig. 4 and Fig. 5 by setting MIN to 30, 10.
Each perturbed image ADV in Fig. 4 and Fig. 5 contains two
kinds of object information. We observe that transfer distur-
bances are greatly affected by the boundary constraint value.
For instance, in the last row, the third column of Fig. 4, a ‘ship’
is visible in the perturbed image, while the source category

‘car’ is invisible. However, the source category of perturbed
images in Fig. 5 are human distinguishable. Therefore, we set
MIN to 10 by default.

Next, we maintain the same experimental settings to prove
that GEAA is also effective for other datasets. Experimental
results on Fashion-MNIST and SVHN datasets are provided in
Table II. Similar experimental phenomena exist for these two
benchmark datasets, i.e. the classification accuracy of models
trained on both perturbed data and reconstructed data increases
with the increment of the training phase. More visualization
images are given in the supplement for the reader to view.

C. Influence of Mnet on GEAA

To prove the effectiveness of Mnet on the performance of
GEAA, we first add various degrees of Gaussian noise to
the initial training set and then train MobileNet (for clear
comparison) using the noise-added training sets. The exper-
imental results are represented in Fig. 7. By comparing the
classification accuracies of models trained on the noise-added
data with that of trained on the perturbed data, we observe that
the data distribution model Mnet is conducive to the generation
of effective adversarial perturbations.

Under the same experimental settings, we evaluate the influ-
ence of various data distribution understanding models on the
proposed GEAA performance. Experimental results are shown
in Table III. The performance of GEAA with the VGG as
the Mnet (about a 44% classification accuracy decrease) is
better than that of GEAA with ResNet and MobileNet. This
indirectly verifies that VGG is more robust than ResNet and
MobileNet; as a result, the GEAA with VGG as the data
distribution understanding model spends amounts of time on
fitting the double-stream adversarial attack task.
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TABLE IV

RESEARCH ON THE INFLUENCE OF THE MODEL DISTRIBUTION ACCURACY ON GEAA (MIN = 10, T = 0.9). PERTURBATION IS CALCULATED BY

Noise(I+,I), AND RECONSTRUCTION IS CALCULATED BY Noise(I∗,I). PSNR DENOTES PEAK SIGNAL TO NOISE RATIO

TABLE V

RESEARCH ON THE INFLUENCE OF LOWER BOUNDARY CONSTRAINT VALUES ON THE GEAA PERFORMANCE (T = 0.9). PERTURBATION IS CALCULATED

BY Noise(I+,I), AND RECONSTRUCTION IS CALCULATED BY Noise(I∗,I). PSNR DENOTES PEAK SIGNAL TO NOISE RATIO

TABLE VI

RESEARCH ON THE INFLUENCE OF THE TEMPERATURE VALUES ON THE GEAA PERFORMANCE (MIN = 10). PERTURBATION IS CALCULATED BY

Noise(I+,I), AND RECONSTRUCTION IS CALCULATED BY Noise(I∗,I). PSNR DENOTES PEAK SIGNAL TO NOISE RATIO

D. Distribution Accuracy Influence on GEAA

In this subsection, we mainly study the impact of the data
distribution accuracies on data protection performance.

We have prepared four ResNet models with different clas-
sification accuracies, 10.0%, 57.68%, 79.38%, and 88.89%.
In terms of the non-trained network, we only store the initial
network weights. Next, four GEAA models based on these
prepared distribution models are trained simultaneously on
the same training set. Similar to Section IV-B, we adopt
generated perturbed images and denoised images to train four
popular classification networks and only provide experimental
results of the last phase in Table IV. An examination of the
results presented in Table IV shows that the reconstruction loss
and adversarial attack loss are positively correlated with the
data distribution accuracy, implying that too high or too low
distribution accuracies decrease the ultimate DPR. Meanwhile,
it is difficult to generate effective adversarial perturbations

with low precision Mnet , and reconstruct the data distribution
with high precision Mnet .

More detailed experiment results about the influence of
distribution accuracy on GEAA are further displayed in Fig. 8,
which again confirm that the reconstruction loss and adver-
sarial attack loss are closely correlated with data distribution
accuracies. Meanwhile, results demonstrate the non-trained
GEAA cannot understand the training data distribution.

E. Ablation Study for Hyperparameters

Next, we study the influence of the boundary constraint and
the temperature on GEAA performance. In this subsection,
we set the medium-precision ResNet as the data distribution
understanding model, the initial temperature to 0.9, and the
lower boundary constraint to a series of values of 0, 1,
10, 30, 60. The 0 boundary constraint denotes no further
limitations on the perturbation degree. The constraint MIN
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Fig. 7. Research on the influence of the data distribution model on GEAA
performance. N-{} denotes the case of adding Gaussian noise to the training
set. The dataset name represents the scenario of generating adversarial pertur-
bations by the trained GEAA. Acc is the evaluation accuracy of the trained
MobileNet model on the testing set.

Fig. 8. Research on the influence of the model distribution accuracies
on GEAA performance. Rloss denotes the reconstruction loss, and Ploss
represents the average value of perturbations.

TABLE VII

THE COMPARISON OF GEAA WITH EXISTING ATTACKS. GEAA(*)
DENOTES EXPERIMENT RESULTS UNDER THE SETTING OF T =

0.6 AND USING THE ‘*’ AS THE TARGET MODEL. ε AND ξ REP-
RESENT THE SINGLE STEP DISTURBATION AND TOTAL DIS-

TURBATIONS. AR IS THE ATTACK RATE. THE LAST THREE

COLUMNS DENOTE MODEL CLASSIFICATION ACCURA-
CIES TRAINED ON PERTURBED SAMPLES

for the transfer noise (TIA,TIB ) is adopted to restrict the
minimum perturbation, thereby indirectly reducing the avail-
ability of the perturbed data I∗. Experimental results are
given in Table V and verify that the larger MIN improves
the double-stream adversarial attack performance while it

TABLE VIII

EVALUATION OF THE ROBUSTNESS OF THE WATERMARK EXTRACTION
PROCEDURE. ξ DENOTES THE MAXIMUM PERTURBATION ON EACH

IMAGE PIXEL (NO NORMALIZE). ACCURACY MEANS THE CLAS-
SIFICATION ACCURACY OF TRAINED MODEL ON I+ + ξ

TABLE IX

EVALUATION OF REVERSIBLE WATERMARKING
IN ATTACK PERFORMANCE

degrades the recoverability of the denoising reconstruction.
For instance, the training classification accuracy based on the
denoised data drops sharply at the large boundary constraint
value (60), a decrease of approximately 21%. Moreover, the
model classification accuracies for the 0 boundary constraint
trained on both perturbed data and the denoised data are
less than 55%, indicating the importance of the boundary
constraint.

Similar to the analysis for the lower boundary constraint
MIN, we next study the role of the starting temperature in
the network optimization process. By default, we set MIN
to 10 and the number of optimization phases to 15. The
minimum value of the starting temperature is set to 0, with
six groups of experiments at an interval of 0.3. Experimental
results presented in Table VI show that the value of the starting
temperature strongly affects the classification accuracy of the
denoised data-trained model, i.e. low temperatures (T = 0,
0.3) leading to a classification accuracy decrease of 7%.

F. The Comparison of GEAA With Existing Attacks

[11], [12] proposed the reversible adversarial attacks to
deceive the well-trained classification model. However, there
are not available public training or testing codes. Luckily,
these two methods are based on existing adversarial attacks
and reversible data hiding technologies.

Therefore, to verify the data protection performance of
GEAA, we set a series of comparative experiments with
existing adversarial attacks. Specifically, we adopt the pop-
ular attacks including PGD [13], BIM [14], MIFGSM [47],
to generate adversarial examples, and then train the proven
effective classification networks using these generated adver-
sarial examples. Both PGD, BIM, and MIFGSM are multi-step
adversarial attack methods. Compared with BIM, PGD adopts
randomly generated values as initial perturbations. Experimen-
tal results are shown in Table VII. By observing the decline
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Fig. 9. The detailed network structure of GEAA. GEAA includes the double-streamed adversarial attack module, denoising reconstruction module, and
watermark extraction module.

TABLE X

RESEARCH ON THE INFLUENCE OF EMBEDDED WATERMARKS ON THE GEAA PERFORMANCE (MIN = 10, T = 0.9).
PERTURBATION IS CALCULATED BY Noise(I+,I), AND RECONSTRUCTION IS CALCULATED BY Noise(I∗,I)

TABLE XI

RESEARCH ON THE INFLUENCE OF THE NUMBER OF EMBEDDED WATERMARKS ON THE GEAA PERFORMANCE (MIN = 10, T = 0.9).
EACH WATERMARK IS COMPOSED OF ONE TO FOUR LETTERS OR NUMBERS. PSNR DENOTES PEAK SIGNAL TO NOISE RATIO

rate in the classification accuracy of benign samples, we can
conclude that under similar perturbation degrees, the proposed
GEAA shows a better data protection performance than the
mentioned popular attacks.

In our opinion, this is because existing adversarial attacks
generate perturbations that only disrupt the local features

extracted by the target model. However, these local features
are only a subset of classification features that can distin-
guish different categories. Therefore, the retrained network
based on these adversarial examples finds other local features
to classify samples. However, the proposed GEAA adopts
the double-stream adversarial attack network. Each sample
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Fig. 10. Visual results of the generated perturbed data and denoised data on CIFAR10 dataset. ORI, PRO and ADV denote the orginal image, the denoised
sample and the perturbed sample.

generated by GEAA contains two kinds of category
features.

G. Multiple Embedding-Single Extraction

We further analyze the correlation between the GEAA
performance and the embedded watermarks. Considering the
potential non-authorized data sharing problem, GEAA adopts
the multiple embedding-single extraction. Intuitively, com-
plicated watermarks are difficult to embed and reconstruct.
To solve this problem, we select a series of binary greyscale
images as the identity card ID and embed the message into
data and GEAA weights. The mutual memories of the data
and model weights alleviate the problem that low-quality data
cannot carry adequate identification information.

As shown in Fig. 6, we select 9 different binary greyscale
images as embedded watermarks and set five groups of com-
parative experiments, embedding ‘TRAN’, ‘F’, ‘8’, or ‘@’ and
embedding all watermarks. We observe from Table X that the
single watermark embedding leads to an attack performance
decrease. Perturbations under the complicated watermarks
are more efficient for data protection. In our opinion, this
is because the embedded watermark increases the difficulty
of the denoising reconstruction, which in turn impacts the
double-stream adversarial attack task.

Will the efficiency of the multiple embedding-single extrac-
tion be affected due to a large number of denoisers in practical
applications? To answer such question, we conduct supple-
mentary experiments in this section. We randomly gener-
ate 100 watermarks. Each watermark is composed of one
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Fig. 11. Visual results of the generated perturbed data and denoised data on the SVHN and Fashion-MNIST datasets. ORI, PRO and ADV denote the original
image, the denoised sample and the perturbed sample.

to four letters or numbers. For a fair comparison, we only
modify the number of embedded watermarks, 10, 50, 100.
Experiment results are given in Table. XI. We observe that a
large number of extractors affects the efficiency of watermark
extraction, but GEAA still performs robustness when embed-
ding 50 watermarks. Therefore, how to embed enough water-
marks in the sharing data protection mode is still a potential
challenge.

Section III-C has explained why we inject watermark fea-
tures into the denoised data, and Section III-D describes how to
extract embedded watermarks. However, it is unclear whether
the watermark extraction process is robust. Therefore, we ran-
domly add perturbations ξ (Normal distribution and uniform
distribution) into the reconstructed images to evaluate the
robustness of the watermark extraction procedure. Experiment
results are illustrated in Table VIII. We observe that the default
watermark extraction procedure is vulnerable to perturbation.
Next, we introduce the adversarial training, which incorporates
the perturbation into the training process. Namely, inputs of
the watermark extraction is I+ + ξ instead of I+. In this
way, we successfully improve the robustness of the watermark
extraction.

H. What Are the Benefits of GEAA?

Finally, we illustrate several core competitiveness of GEAA.
1) Higher Safety Performance: (1) The double-stream

adversarial attack and denoising reconstruction modules of
GEAA exist in pairs, even GEAA models trained under
the same experimental settings cannot denoise each other.
(2) GEAA only provides users with the generated perturbation
data and denoising reconstruction module (part of GEAA).
(3) As discussed in Section II, traditional adversarial attacks
defeat the model by adding crafted perturbations to benign
samples. To implement such attacks, the attacker needs to
provide available benign samples. However, there is no need
to attack the model once the benign samples are available in
GEAA. Therefore, GEAA has high safety performance.

2) A Variant of Reversible Adversarial Examples: GEAA
could reconstruct the original data distribution from generated
adversarial examples.

3) Visualize, Attack and Identify: Visualizing data helps
users better understand specific data information, e.g.
understanding the sample distribution. Traditional encryption
methods [48] can protect data from being leaked but with
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poor visualization performance. Furthermore, we demonstrate
experimentally that reversible watermarking techniques are
not very effective in data protection, even though they show
excellent visualization performance [49], [50].

Conventional watermarking methods reconstruct embedded
watermarks instead of benign samples. Reversible watermark-
ing technologies can reconstruct original samples. Therefore,
we investigate the possibility of using reversible watermarking
algorithms with common watermarking methods to replace
GEAA.

Here, we first illustrate several limitations of the reversible
watermarking alternative to the double-stream adversarial
attack module. (1) Limited embedding information: To reduce
the availability of watermarked samples, we embed the maxi-
mum amount of information into each training sample. (2) Few
public codes: We find two public available codes [49], [50]
to detect whether watermarked samples could protect dataset
information. Results in Table IX illustrate that reversible
watermarking techniques are not very efficient in replacing
double-stream adversarial attacks. (3) Relatively simple water-
marking process: Compared with watermarking, the double
stream adversarial attack is obtained by optimizing amounts
of model parameters.

We then explain the limitations of common watermarking
techniques alternative to the denoising reconstruction mod-
ule. When researchers only consider recognition tasks, com-
mon watermarking methods are sufficient. However, the data
owner should transmit the key to the downloader in the
data sharing scenario. In GEAA, the denoising reconstruction
module (playing the role of a key) consists of two parts,
data distribution reconstruction, and watermark embedding.
An available alternative to denoising reconstruction is to
combine reversible watermark extraction with common water-
marking methods. Such techniques make shared data under
threat because they are parsable, e.g. downloaders remove the
watermarking process and only use the first part. In contrast,
the trained denoising reconstruction module is an indivisible
whole.

V. CONCLUSION

In this work, we have proposed a newly designed
double-stream architecture – guided erasable adversarial attack
– including a double-streamed adversarial attack module,
a denoising reconstruction module, and a watermark extraction
module, for protecting high-quality shared data. The GEAA
performance is evaluated on three benchmark datasets and
four popular classification models. Qualitative and quantitative
results show that the proposed GEAA can effectively resolve
the shared data protection problem.

In the future, we expect to improve data protection perfor-
mance, such as reducing perturbation levels while ensuring
high DPR values. Assigning the best matching class pair in
dataset partitioning provides a feasible direction. Additionally,
we tend to strengthen a series of adversarial example process-
ing methods and propose a metric to measure the degree of
perturbation and estimate whether the inserted perturbation
is robust enough for post-processing. Furthermore, combining

GEAA with backdoor attacks seems to be a feasible research
idea. The backdoor attack refers to the attacker implanting
some backdoors in the model by modifying the training
data. In this way, a model trained on data generated by a
GEAA + backdoor attack has backdoor effects. By detecting
various backdoor effects, data owners can verify the source of
the leaked data.

REFERENCES

[1] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 10076–10085.

[2] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” 2020, arXiv:2010.11929.

[3] Q. Hu et al., “RandLA-Net: Efficient semantic segmentation of large-
scale point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11108–11117.

[4] T. Wolf et al., “Transformers: State-of-the-art natural language process-
ing,” in Proc. Conf. Empirical Methods Natural Lang. Process., Syst.
Demonstrations, 2020, pp. 38–45.

[5] C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

[6] Y. Liu et al., “Trojaning attack on neural networks,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2018, pp. 1–15.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[8] P. W. Koh, J. Steinhardt, and P. Liang, “Stronger data poisoning attacks
break data sanitization defenses,” 2018, arXiv:1811.00741.

[9] Y. Liu et al., “Reflection backdoor: A natural backdoor attack on deep
neural networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV). Cham,
Switzerland: Springer, 2020, pp. 182–199.

[10] X. Jia, X. Wei, X. Cao, and X. Han, “Adv-watermark: A novel watermark
perturbation for adversarial examples,” in Proc. 28th ACM Int. Conf.
Multimedia, Oct. 2020, pp. 1579–1587.

[11] J. Liu, W. Zhang, K. Fukuchi, Y. Akimoto, and J. Sakuma, “Unautho-
rized AI cannot recognize me: Reversible adversarial example,” 2018,
arXiv:1811.00189.

[12] Z. Yin, H. Wang, L. Chen, J. Wang, and W. Zhang, “Reversible
adversarial attack based on reversible image transformation,” 2019,
arXiv:1911.02360.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” Jun. 2017,
arXiv:1706.06083.

[14] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2016, arXiv:1607.02533.

[15] D. A. Tamburri, “Design principles for the general data protection
regulation (GDPR): A formal concept analysis and its evaluation,” Inf.
Syst., vol. 91, Jul. 2020, Art. no. 101469.

[16] H. Fang et al., “Deep template-based watermarking,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1436–1451, Apr. 2020.

[17] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data
with deep networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 657–672.

[18] J. Zhang et al., “Deep model intellectual property protection via deep
watermarking,” 2021, arXiv:2103.04980.

[19] P. Addesso, M. Cirillo, M. Di Mauro, and V. Matta, “ADVoIP: Adver-
sarial detection of encrypted and concealed VoIP,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 943–958, 2019.

[20] P. Addesso, M. Barni, M. Di Mauro, and V. Matta, “Adversarial
Kendall’s model towards containment of distributed cyber-threats,” IEEE
Trans. Inf. Forensics Security, vol. 16, pp. 3604–3619, 2021.

[21] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410–14430,
2018.

[22] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

[24] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1765–1773.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on July 09,2022 at 02:12:38 UTC from IEEE Xplore.  Restrictions apply. 



2482 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

[25] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828–841, Oct. 2019.

[26] A. Bhattad et al., “Unrestricted adversarial examples via semantic
manipulation,” in Proc. Int. Conf. Learn. Represent., 2020, pp. 1–15.

[27] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “UPSET
and ANGRI: Breaking high performance image classifiers,” 2017,
arXiv:1707.01159.

[28] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[29] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in Proc. IEEE
Int. Conf. Comput. Vis., Oct. 2017, pp. 1369–1378.

[30] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial
examples for black box audio systems,” in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2019, pp. 15–20.

[31] H. Chen, H. Zhang, P.-Y. Chen, J. Yi, and C.-J. Hsieh, “Attacking
visual language grounding with adversarial examples: A case study on
neural image captioning,” in Proc. 56th Annu. Meeting Assoc. Comput.
Linguistics, Jul. 2018, pp. 2587–2597.

[32] Y. Xu et al., “Exact adversarial attack to image captioning via structured
output learning with latent variables,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4135–4144.

[33] H. Kwon, Y. Kim, H. Yoon, and D. Choi, “Selective audio adversarial
example in evasion attack on speech recognition system,” IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 526–538, 2019.

[34] S. Joshi, J. Villalba, P. Zelasko, L. Moro-Velazquez, and N. Dehak,
“Study of pre-processing defenses against adversarial attacks on state-of-
the-art speaker recognition systems,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 4811–4826, 2021.

[35] W. Tang, B. Li, S. Tan, M. Barni, and J. Huang, “CNN-based adver-
sarial embedding for image steganography,” IEEE Trans. Inf. Forensics
Security, vol. 14, no. 8, pp. 2074–2087, Aug. 2019.

[36] M. Liu, W. Luo, P. Zheng, and J. Huang, “A new adversarial embedding
method for enhancing image steganography,” IEEE Trans. Inf. Forensics
Security, vol. 16, pp. 4621–4634, 2021.

[37] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On insta-
bilities of deep learning in image reconstruction and the potential costs
of AI,” Proc. Nat. Acad. Sci. India A, Phys. Sci., vol. 117, no. 48,
pp. 30088–30095, 2020.

[38] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unrea-
sonable effectiveness of deep features as a perceptual metric,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 586–595.

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[42] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[43] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[44] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Handbook Systemic Autoimmune Diseases, vol. 1, no. 4,
2009.

[45] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[46] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-
digit number recognition from street view imagery using deep convolu-
tional neural networks,” 2013, arXiv:1312.6082.

[47] Y. Dong et al., “Boosting adversarial attacks with momentum,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9185–9193.

[48] M. Kaur and V. Kumar, “A comprehensive review on image encryption
techniques,” Arch. Comput. Methods Eng., vol. 27, no. 1, pp. 15–43,
Jan. 2020.

[49] A. Roy, R. S. Chakraborty, and R. Naskar, “Reversible color image
watermarking in the YCoCg-R color space,” in Proc. Int. Conf. Inf.
Syst. Secur. Cham, Switzerland: Springer, 2015, pp. 480–498.

[50] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image
watermarking using interpolation technique,” IEEE Trans. Inf. Forensics
Security, vol. 5, no. 1, pp. 187–193, Mar. 2009.

Mengnan Zhao received the B.S. degree in
electronic and information engineering from the
Tianjin University of Technology in 2018 and the
M.S. degree from the School of Information and
Communication Engineering, Dalian University of
Technology, in 2021. His research interests include
adversarial examples and deep learning.

Bo Wang (Member, IEEE) received the B.S. degree
in electronic and information engineering and the
M.S. and Ph.D. degrees in signal and information
processing from the Dalian University of Technol-
ogy, Dalian, China, in 2003, 2005, and 2010, respec-
tively. From 2010 to 2012, he was a Post-Doctoral
Research Associate with the Faculty of Management
and Economics, Dalian University of Technology.
He is currently an Associate Professor with the
School of Information and Communication Engi-
neering, Dalian University of Technology. His cur-

rent research interests focus on the areas of multimedia processing and
security, such as digital image processing and forensics.

Wei Wang (Member, IEEE) received the B.E. degree
in computer science and technology from North
China Electric Power University in 2007. Since
2012, he has been with the National Laboratory of
Pattern Recognition, Institute of Automation, Chi-
nese Academy of Sciences, where he is currently
an Assistant Professor. His research interests include
pattern recognition, image processing, and digital
image forensics, including watermarking, steganaly-
sis, and tampering detection.

Yuqiu Kong received the B.S. and Ph.D. degrees
from the School of Mathematical Sciences, Dalian
University of Technology (DUT), China, in 2014 and
2019, respectively. She is currently a Faculty with
the School of Innovation and Entrepreneurship,
DUT.

Tianhang Zheng received the B.S. degree from
Peking University, China, in 2016, and the M.S.
degree from the University at Buffalo, Buffalo, NY,
USA, in 2019. He is currently pursuing the Ph.D.
degree in electrical and computer engineering with
the University of Toronto, Toronto, ON, Canada. His
research interests include adversarial learning, data
poisoning, privacy, and fairness.

Kui Ren (Fellow, IEEE) received the Ph.D. degree
from the Worcester Polytechnic Institute, Worcester,
MA, USA. He is currently a Professor of computer
science and technology and the Director of the
Institute of Cyberspace Research, Zhejiang Univer-
sity, Hangzhou. China. His current research interests
include cloud and outsourcing security, wireless and
wearable system security, and artificial intelligence
security. He is a Distinguished Scientist of the ACM.
He was a recipient of the NSF CAREER Award in
2011 and the IEEE CISTC Technical Recognition
Award 2017.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on July 09,2022 at 02:12:38 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


