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Abstract—Aremarkable number of backdoor attack methods
have been proposed in the literature on deep neural networks
(DNNs). However, it hasn’t been sufficiently addressed in the
existing methods of achieving true senseless backdoor attacks
that are visually invisible and label-consistent. In this paper, we
propose a new backdoor attack method where the labels of the
backdoor images are perfectly aligned with their content, ensuring
label consistency. Additionally, the backdoor trigger is meticulously
designed, allowing the attack to evade DNN model checks and
human inspection. Our approach employs an auto-encoder (AE)
to conduct representation learning of benign images and interferes
with salient classification features to increase the dependence of
backdoor image classification on backdoor triggers. To ensure
visual invisibility, we implement a method inspired by image
steganography that embeds trigger patterns into the image using
the DNN and enable sample-specific backdoor triggers. We conduct
comprehensive experiments on multiple benchmark datasets and
network architectures to verify the effectiveness of our proposed
method under the metric of attack success rate and invisibility.
The results also demonstrate satisfactory performance against a
variety of defense methods.

Index Terms—Backdoor attack, image steganography, label
consistency, Re-parameterized noise.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) and one of the mainstream
methods, Deep Learning, has gained broad interests in

various research fields such as natural language processing [1],
image recognition [2], signal processing [3], and industrial con-
trol [4], etc. Meanwhile, researchers have conducted extensive
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studies on the security issues of deep learning models, including
adversarial attacks [5], [6], [7], backdoor attacks [8], [9], [10],
[11], defense mechanisms [12], [13], [14], and so on.

With the advent of large models, the computational cost
of training large DNN models grows rapidly such that model
fine-tuning using publicly available pre-trained models and
datasets has become a common approach. Nonetheless, public
pre-trained models and datasets are often released by third par-
ties, such that the users may suffer potential adversaries such as
malicious backdoor embedding. Regarding this concern, there
are research works conducted on two perspectives, the attacker
and the defender. In this work, we focus on the former, i.e. an
“invisible” label-consistent backdoor attack strategy.

After the BadNets [8] backdoor attack method demonstrated
the feasibility and harmfulness of neural network backdoor at-
tacks, the methods for backdoor attacks ushered in the rapid
development [15]. Such attacks may cause models to exhibit
unexpected behaviors under specific trigger conditions, posing
potential threats to the reliability and security of systems. There-
fore, understanding and mitigating backdoor attacks is crucial
for ensuring the integrity and reliability of machine learning ap-
plications. It is important to clarify that the method proposed
in this paper is not intended for malicious purposes, but rather
aims to strengthen the resilience of machine learning systems
against potential adversarial behaviors and to drive progress and
advancement in related fields. Currently, the majority of back-
door attack methods focus on improving the stealthiness of the
backdoor trigger and the success rate of the attack. These meth-
ods rely on activating the backdoor trigger during inference,
thereby gaining complete control over the model’s behavior. It
is a highly effective attack method. However, it crucially depends
on the obvious incorrect labels present in the injected backdoor
samples [16]. In this paper, we introduce a concept of back-
door attacks, termed “true senseless backdoor attacks”, aimed
at embedding backdoor triggers into images without requiring
significant modification or disruption of image labels, thereby
preserving the visual appearance and semantic content of the
images. This makes the attacked images difficult to detect and
filter, thus enhancing the effectiveness of the backdoor attacks.
Furthermore, in Section III of CL [17], Alexander Turner et al.
demonstrated that classic backdoor images are easily detected
and filtered out due to mislabeled tags, impacting the effective-
ness of the attack.

In summary, in most previous backdoor attack scenarios,
training sets could be contaminated with backdoor images of
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any category. Although these images had highly concealed
backdoor triggers, their labels were modified to the target label,
making it easy for humans to detect them by comparing image
labels with content. Inspired by this insight, we recognize the
importance of aligning the labels of backdoor images with their
content to ensure the success rate of backdoor attacks. This
realization forms the cornerstone of our research motivation.
Therefore, the objective of our research is to ensure both the
stealthiness of backdoor triggers and the consistency between
backdoor image labels and content.

Based on the aforementioned considerations, we propose a
new label-consistent backdoor attack method without label con-
tamination, which meets the requirements of both visual invisi-
bility and clean label settings. Under this label-consistent setting,
the model is likely to ignore the embedded backdoor trigger if
the backdoor image is only classified based on the salient fea-
tures of its original image. To achieve such a label-consistent
backdoor attack, we employ a classification feature reduction
approach that makes the classification of backdoor images more
dependent on the added backdoor triggers. Specifically, we uti-
lize the autoencoder [18] to carry out representation learning
on benign images. Then, we apply re-parameterized noise sam-
pling to perturb the salient classification features. Additionally,
inspired by information hiding, specifically DNN-based image
steganography [19], [20], we embed hidden characters into the
image as backdoor triggers and enable the creation of invisible,
sample-specific, and label-consistent poisoned images.

Our contributions are summarized as follows:
� We propose a label-consistent backdoor attack method

based on re-parameterized noise triggers, which can ef-
fectively generate poisoned images with trigger patterns
that possess specificity and invisibility.

� We explore the method of re-parameterized noise sam-
pling supplemented by the restriction of the loss function
to reduce the salient features of image classification, and
utilize information hiding techniques to embed backdoor
triggers, thereby achieving strong dependence of back-
door image classification on backdoor triggers under the
label-consistent setting.

� We conduct comprehensive experiments on various
datasets and network architectures to verify the effective-
ness and stealthiness of our method. Furthermore, our ap-
proach also shows strong resistance against several defense
mechanisms.

II. RELATED WORK

A. Backdoor Attack

Deep neural network backdoor attacks can be implemented
either by injecting poisoned samples into the training set or
by directly modifying neural network models. By implanting
a “backdoor” into a model, it becomes sensitive to inputs con-
taining specific triggers. This means that when the input is a
sample that contains trigger characteristics, the backdoor model
will behave incorrectly as expected by the attacker. Backdoor at-
tacks can be classified into label-inconsistent backdoor attacks

and label-consistent backdoor attacks, based on whether the la-
bel of the backdoor image is modified.

1) Label-Inconsistent Backdoor Attack: Gu et al. [8] first
proposed the concept of deep learning model backdoor attack
in BadNets, which is a pioneering work in the field of DNN
backdoor attack. In this paper, they described the basic steps
of backdoor attacks, which involve adding a trigger to a be-
nign image to generate a poisoned image, labeling the poisoned
image with a target label specified by the attacker, and finally
training these poisoned images together with the benign ones.
BadNets successfully carried out attacks on datasets such as
MNIST. Blend [9] demonstrated that backdoor triggers can be
set arbitrarily, and put forward the concept of backdoor trigger
stealthiness for the first time. Since then, the stealth attacks have
become a hot topic.

Liao et al. [10] proposed using invisible adversarial perturba-
tions as triggers for backdoor attack, and adopted two methods
to generate perturbation backdoor patterns. Nguyen et al. [11]
argued that humans can identify inconsistencies in images, so
they proposed to use tiny distortions as triggers to make the
poisoned image more realistic and natural. Sarkar et al. [21]
successfully implemented an invisible backdoor attack against
face recognition systems using facial attributes or specific ex-
pressions. Recently, Zhang et al. [22] proposed an attack method
called poison ink, which uses image structure as the target poi-
soned region and fills it with poison ink to generate triggers. This
attack method allows for the creation of backdoors that do not
require pixel-level modifications and can be applied to various
datasets, including CIFAR-10 and ImageNet.

In addition to the data-level backdoor attacks mentioned
above, backdoor attacks can also be performed at the model-
level. Liu et al. [23] proposed the Trojan attack, which assumed
that triggers can trigger abnormal behavior in a deep neural
network. They generated a general backdoor trigger through
a reverse neural network and modified the model to achieve
backdoor implantation. PoTrojan attack [24] involves inserting
PoTrojan neurons into each layer of AlexNet [25] to implement
backdoor attacks. Rakin et al. [26] proposed a backdoor attack to
modify weight bits, which flips key weight bits stored in mem-
ory. Chen et al. [27] further reduced the flip bits required to
embed hidden backdoors.

2) Label-Consistent Backdoor Attack: As mentioned above,
some invisible backdoor attacks create poisoned images that are
very similar to benign ones but have different labels. There-
fore, by examining the relationship between training samples
and labels, the above backdoor attacks can be detected, and
label-consistent backdoor attacks are derived.

Turner et al. [17] proposed a label-consistent attack, which
uses adversarial perturbation or GAN [28] to modify some
benign images from the target class to mitigate the impact of
“robust features” contained in the poisoned samples, and then
adds triggers to the image to attack. Barni et al. [16] conducted
a simple exploration of clean label attacks and demonstrated
that compared to the backdoor attacks with inconsistent labels,
clean label attacks need to increase the proportion of poisoned
samples to more than 20% to achieve the attack. For a certain
poisoned sample, Saha et al. [29] considered making it as close
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as possible to the sample of the target class in pixel space and as
close as possible to the sample with triggers in the feature space,
so that the model could learn trigger features while avoiding
human detection.

B. Backdoor Defense

The backdoor attacks of neural network are gradually diver-
sified, which may pose a threat to society and human life in
related fields. Therefore, the importance of defending against
backdoor attacks is self-evident. Corresponding to the attack
methods, defense methods also can be divided into data-level
defense methods and model-level defense methods.

1) Data-Level Defense Methods: Chen et al. [30] proposed
to conduct cluster analysis on the activation values of training
data in the hidden layer of the model, so as to distinguish clean
samples from backdoor samples.

Gao et al. [31] introduced STRIP detection method by adding
perturbations to input data, observing the randomness of the pre-
diction results, and introducing classification entropy to quantify
the likelihood of a given input with a trigger. The SentiNet de-
fense approach proposed by Chou et al. [32] in 2020 leverages
the sensitivity of the DNN models to adversarial attacks and em-
ploys model interpretability and target detection techniques as
detection mechanisms.

2) Model-Level Defense Methods: Neural Attention Distilla-
tion (NAD) [12] is a technique that combines knowledge distil-
lation [33] and neural attention transfer. Specifically, the teacher
network is used to guide and fine-tune the backdoor student net-
work on a small subset of clean data, making the middle layer
attention of the student network completely consistent with the
teacher network, thereby removing the backdoor from the back-
door student model. Wang et al. [13] proposed Neural Cleanse
method, which uses gradient descent method to calculate po-
tential triggers for all outputs of the model, and selects trig-
gers from which the contrast is significantly smaller than other
triggers to determine whether there are backdoors. The Purifier
method [14] proposed a backdoor defense method based on ab-
normal activation inhibition, which gives the visual difference
between the pre-training model in backdoor samples and benign
samples from the feature representation of the model’s middle
layer, intuitively revealing the essential problem of abnormal
patterns in the middle layer representation of backdoor samples.
Furthermore, the weight corresponding to fine-grained units can
be updated by dynamic optimization to inhibit the abnormal ac-
tivation of neurons, so as to resist various unknown types of
backdoor attacks.

III. PRELIMINARIES

Before introducing the methodology of our work, we first
introduce some preliminaries of backdoor attacks.

A. Attack Models

1) Label-Inconsistent Backdoor Attack: Suppose there have
a training dataset consisting of N benign images with k classes,

Dtrain = {(xi, yi) : i = 1, . . . , N} , (1)

where xi represents a single image and yi indicates its corre-
sponding label. The attacker randomly selects a portion of sam-
ples from Dtrain to form

Dpart
train = {(xi, yi) : i = 1, . . . , n} , (2)

where yi ∈ {0, . . ., k − 1}.
Next, the attacker constructs poisoned images and get

Dp =
{
(G(xi, p), t) : xi ∈ Dpart

train

}
, (3)

where p is the backdoor trigger associated with xi. G(xi, p)
is a backdoor injection mechanism that is proposed to add the
backdoor trigger to xi, and t is the corresponding target label.
Then, the attacker constructs the poisoned dataset D̃train mixed
with these poisoned samples.

2) Label-Consistent Backdoor Attack: Backdoor attacks
with consistent labels differ from the above attacks only in one
respect. In the label-inconsistent backdoor attack scenario, back-
door images of any category can be mixed into the training set,
and their labels are modified to the target label. As a result,
during the inference stage, any image embedded with backdoor
trigger is likely to be classified as the target label. However, in the
label-consistent backdoor attack scenario, only backdoor images
with one category are mixed into the training set. The true class
of these images is treated as the target label, so there is no need
to modify their labels, which aligns with the label-consistent
setting. Nevertheless, during the inference stage, any image em-
bedded with backdoor trigger can still be classified as the target
label selected during training.

Therefore, we extract a part of samples from the target class
t to form Dpart

train, and the remaining samples in Dtrain also form
Dbenign. The definitions are as follows:

Dpart
train = {(xi, t) : i = 1, . . . , n} , (4)

Dbenign = Dtrain −Dpart
train. (5)

Then, a poisoned image set Dp is constructed, which can be
represented as

Dp =
{
(Gstega(xi), t) : xi ∈ Dpart

train

}
, (6)

whereGstega is a pre-trained model using the idea of information
hiding, so that different triggering styles can be added to different
xi. Finally, we obtain the poisoned training set

D̃train = Dbenign ∪ Dp. (7)

The pre-trained classification model parameter is θ and the ulti-
mate goal is to enable the retrained model to be affected by our
method. Therefore, the optimization objective of this paper is as
follows:

θ∗ = argmin
θ

L(fθ(x), y), where (x, y) ∈ D̃train (8)

where L is a loss function (e.g. cross entropy). Besides, the
poisoned ratio is defined as:

p =
|Dp|∣∣∣D̃train

∣∣∣ =
n

N
. (9)
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Fig. 1. The overall pipeline of our method.

B. Threat Model

1) Attacker’s Capabilities: We assume that attackers can
modify a small amount of training data, but do not have any other
information about the target model, such as the loss function or
model structure. The user conducts fine-tuning training using a
pre-trained model and a poisoned dataset. During the inference
stage, an attacker can query the target model with any input but
cannot manipulate the inference process. These assumptions are
the minimum requirements for backdoor attacks.

2) Attacker’s Goal: The primary goal of the backdoor at-
tacks is to achieve a high success rate by implanting a backdoor
without affecting the normal training task. Another important
indicator of backdoor attacks is stealthiness, which is not only
the visual stealthiness of the backdoor trigger, but also the con-
sistency between the backdoor image content and label. If a user
detects backdoor images during the training stage using various
defense mechanisms, the backdoor image will be discarded, re-
sulting in the failure of the attack. Therefore, our objective is to
develop a resilient backdoor attack method that is invisible to
detection.

IV. METHODOLOGY

Fig. 1 illustrates the pipeline of our method. The backdoor
attack implementation consists of three stages. First, we generate
poisoned images and create a poisoned training dataset. Next, we
retrain the pre-trained classification model using the poisoned
dataset to complete the mapping of the backdoor trigger and

the target label. The final step takes place during the inference
stage, where the compromised model is classified correctly on
the clean image, while its prediction changes to the target label
on the backdoor sample with the backdoor trigger added. Our
attack is executed in the first stage, where the poisoned images
are generated.

A. Generate Poisoned Images

1) Feature Reduction Through Re-Parameterization: To im-
plement a backdoor attack with label-consistent settings, we
drew inspiration from [17]. Our approach involves image re-
construction and probability-based sampling to make the clas-
sification of reconstructed backdoor images more reliant on the
added backdoor trigger by interfering with the image’s salient
features. We aim for the feature vectors inputted into the decoder
to not only reflect the original image’s characteristics but also
conform to the probability distribution. By transforming some
salient features from the form of “one-hot” into a smoother distri-
bution, we can achieve feature reduction. As shown in “Generate
Poisoned Images” in Fig. 1, for the autoencoder network, let the
input image be denoted as X , the encoder function as E(), the
corresponding feature representation as Z, the decoder function
as D(), and the reconstructed image as X ′. Furthermore, we
have Z = E(X), where E() comprises n downsampling lay-
ers and m residual blocks. Similarly, X ′ = D(Z), where D()
consists of n upsampling layers and m residual blocks. It is
worth noting that in our experiments, the encoder and decoder
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structures, as well as parameter configurations, vary for different
datasets. In the process of re-parameterized sampling, we adopt
the Gumbel-Softmax sampling, which uses Gumbel distribution
to achieve polynomial distribution sampling. The probability
density function (PDF) of the Gumbel distribution is:

f(x;μ, β) = e−z−e−z

, where z =
x− μ

β
(10)

Where μ is the positional coefficient (the mode of the Gumbel
distribution is μ) and β is the scale coefficient (the variance of
the Gumbel distribution is π2

6 · β2).
To implement re-parameterization trick using the Gumbel

distribution, we follow these steps. For the classification con-
fidence vector P outputted by the classification network, we
first generate a random vector U of the same dimensionality as
P , where each element ui is uniformly distributed in the inter-
val [0, 1). Next, we calculate the Gumbel distribution random
number, also known as Gumbel noise, by applying the formula
Gi = −log(−log(ui + eps)). Then, we add the Gumbel noise
to the corresponding dimensions of P , resulting in a new vector
P ′ = [p1 +G1, p2 +G2, . . ., pn +Gn]. Finally, we further ap-
proximate P ′ by applying the Softmax function, and we adjust
the temperature parameter τ to control the smoothness level,
yielding the final result. The formula is as follows:

fτ (P
′) =

⎛
⎝ e

p′
i
τ

∑
k e

p′
k
τ

⎞
⎠

i

(11)

Where pi is the value of the i-th position of the P vector and τ
is the parameter greater than 0. The larger the τ , the smoother
the resulting distribution.

In this process, we introduce a variety of loss functions to
constrain the reconstructed image, including Lrect, Lssim, and
Lact.

ForLrect, we calculate the mean square error loss by taking the
square of the pixel difference between the reconstructed image
and the input image at the element level, and then averaging it
over the entire image. The formula is as follows:

Lrect =
1

mn

m−1∑
i=0

n−1∑
j=0

‖I(i, j)−K(i, j)‖2 (12)

Where I(i, j) and K(i, j) represent the true and reconstructed
values of the (i, j)-th pixel point, respectively.

In addition, according to neuroscience research, humans tend
to place more emphasis on the structural similarity when evaluat-
ing the difference between two images. Therefore, we introduce
Lssim as a loss function, and the formula is as follows:

Lssim =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(13)

where μx and μy represent the mean value of the original image
and the reconstructed image respectively, σx and σy represent
the standard deviations of the two images respectively, σxy is
the covariance of the two images, and C1 and C2 are constants
used for stable calculations.

To achieve our goal of reducing salient features and main-
taining normal image classification, we implement an activation

loss function, denoted as Lact. Firstly, we utilize log(1 + pj)
to decrease the confidence corresponding to class j in the re-
constructed image, aiming to guide the autoencoder to ignore
salient features of the image during training. Secondly, by em-
ploying the term −λ ·min(0, pj −max(pi))i�=j , we constrain
the confidence of class j to remain the highest, ensuring that the
reconstructed image can be correctly classified into the corre-
sponding class. Through this design of activation loss, we further
ensure the consistency of labels in the backdoor images.

Lact = log(1 + pj)− λ ·min (0, pj −max(pi))i�=j , (14)

where pj is the classification confidence based on the real class
of the image, and pi is the classification confidence of other
classes.

In summary, the total loss function is defined as Lall =
αLrect + βLssim + γLact. Additionally, we acknowledge the im-
portance of hyperparameter selection and thus conduct a com-
prehensive search experiment. Specifically, we explore the ef-
fects of different parameter choices on model performance
through grid search. We identify an optimal set of hyperparam-
eters, with values α = 1.0, β = 0.5 and γ = 0.5.

2) Add Backdoor Trigger Through DNN Image Steganog-
raphy: After performing the re-parameterization operation on
clean images, the next step is to incorporate backdoor triggers.
Previously, many backdoor attacks involved directly overlaying
the trigger pattern onto the image, creating a backdoor image
with high detectability but poor stealthiness. To enhance the
stealthiness of the backdoor image, researchers have introduced
adversarial perturbations or used image structures as the poison-
ing area and filled them with other information [22] to generate
the backdoor trigger.

Our paper attempts to draw inspiration for adding triggers
from research on information hiding. Specifically, steganogra-
phy is an important technique in the field of information hid-
ing for covert transmission or protection of information, with
LSB steganography [34] being the most common method. This
technique places secret information by modifying the least sig-
nificant bit of an image, as shown in Fig. 2. However, LSB
steganography suffers from poor security and robustness, as it
is easily affected by common image processing operations, re-
sulting in inaccurate extraction of embedded information and
susceptibility to detection or tampering.

In this regard, our paper adopts a DNN-based image steganog-
raphy method [20] to implement backdoor trigger embedding.
As illustrated in Fig. 3, a pre-trained encoder-decoder network
is employed for image encoding and decoding operations. The
simultaneous training of the encoder and decoder is achieved
by minimizing the perceptual difference between the input im-
age and the encoded image, as well as the cross-entropy loss
between the original message and the decoded message. Impor-
tantly, this method introduces sets of noise layers between the
encoder and decoder, composed of various perturbations, en-
hancing the robustness of embedded messages. Consequently,
the backdoor images maintain stability and extractability even
under common image processing operations such as rotation and
cropping.
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Fig. 2. The process of LSB steganography.

Fig. 3. Schematic representation of the DNN-based image steganography
method.

Specifically, the encoder and decoder train simultaneously on
a clean training set using a U-Net [35] style architecture. The
encoder is responsible for hiding the character information into
the image, generating an encoded image. Ideally, there should
be no perceptible difference between the encoded image and
the original image. On the other hand, the decoder’s role is to
recover the hidden information from the encoded image. The
right section of “Generate Poisoned Images” in Fig. 1 illustrates
how the encoder re-encodes the re-parameterized image and the
hidden message to generate a backdoor image containing the
customized text trigger. This trigger is designed to be hidden
within the image and goes unnoticed by most detection algo-
rithms. After this step, we have completed the construction of
the backdoor image.

Exactly, by choosing a DNN-based steganography method,
we can enhance the stealthiness and robustness of the backdoor
image, avoiding the insecurity and robustness issues associated
with LSB steganography. This method provides a more reliable
solution for embedding backdoor triggers, allowing better pro-
tection of the trigger and achieving covert transmission.

B. Attack Procedure

As illustrated in the “Training Stage” depicted in Fig. 1, the
attacker can generate backdoor images using the aforementioned
steps and send them to a third-party data owner. The client then
retrains the baseline model using the training dataset mixed with
the poisoned images to obtain the malicious backdoor model.

In the “Inference Stage”, we construct two separate test sets
using the original test dataset. One test set is used to measure the
accuracy of clean data, which refers to the classification accuracy
of data that has not been compromised by backdoors. Another
test set measures the attack success rate of backdoor attacks,
which represents the accuracy of data injected with backdoors
when classified by the malicious model. By evaluating these

two test sets, we can comprehensively assess the performance
of backdoor attacks and the degree of harm to the baseline model.

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: In this paper, we conduct our attack on the
MNIST [36], CIFAR10 [37] and GTSRB [38] datasets. The
MNIST dataset involves a 10-class classification task with a
total of 60,000 training images and 10,000 test images for rec-
ognizing hand-written digits. The CIFAR-10 dataset includes 10
categories and consists of 60,000 32x32 color images, includ-
ing 50,000 training images and 10,000 test images for object
recognition. The GTSRB dataset consists of 43 classes of traffic
signs, with 39,209 training images and 12,360 testing images.
These images exhibit variations in lighting conditions and di-
verse backgrounds. Additionally, the images in this dataset have
different sizes. To ensure consistency, we resized them to a uni-
form size of 32x32 pixels.

2) Models: To create re-parameterized images, we use a clas-
sic encoder-decoder network that is commonly used in image
reconstruction tasks. For the addition of backdoor triggers, we
choose a U-Net style DNN as the encoder and use a spatial con-
verter network as the decoder.

In terms of image classification models, we select six popular
network structures: ResNet18 [2], ResNet34 [2], ResNet50 [2],
DenseNet 121 [39], MobileNetV2 [40], and GoogleNet [41].
In our experimental evaluation, we use ResNet18 as the default
network and use other network structures to demonstrate the
generalization capability of our method.

3) Evaluation Metrics: The effectiveness evaluation com-
prises two metrics: clean data accuracy (CDA) and attack success
rate (ASR). Specifically, CDA refers to the probability that clean
samples are correctly predicted as their ground-truth class. ASR,
on the other hand, refers to the probability that poisoned samples
are successfully predicted as the attacker’s specified class. For
a successful backdoor model, ASR should be maintained at a
high level, while CDA should be close to the accuracy of a clean
model.

The stealthiness evaluation includes two metrics as well:
PSNR [42] and SSIM [43], where PSNR represents local similar-
ity and SSIM represents global similarity. The larger the PSNR
is and the closer the SSIM is to 1, the better the invisibility of
backdoor attacks is.

4) Default Settings for Training: The default poison rate
is set to 10%. All victim classifiers use the SGD optimizer
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TABLE I
EXPERIMENTAL RESULTS FOR ATTACK EFFECTIVENESS ON MNIST DATASET

TABLE II
EXPERIMENTAL RESULTS FOR ATTACK EFFECTIVENESS ON CIFAR10 DATASET

TABLE III
EXPERIMENTAL RESULTS FOR ATTACK EFFECTIVENESS ON GTSRB DATASET

with a momentum of 0.9. The initial learning rate is 1e−5 for
the MNIST dataset and 0.01 for the CIFAR10 and GTSRB
dataset. The learning rate is carried out by cosine annealing
with Tmax = 100. We use these default settings in comparison
to other methods.

Additionally, we utilize a grid search approach to optimize
the hyperparameters α, β, and γ in Lall = αLrect + βLssim +
γLact, setting them to 1.0, 0.5, and 0.5, respectively. For the
temperature coefficient τ in the gumbel-softmax step and the
λ parameter in the activation loss, we employ a random search
strategy, determining their values to be 2 and 0.5, respectively.

B. Attack Effectiveness

Firstly, we select five classic backdoor attacks for comparison
and divide them based on label consistency. We present the
experimental results in terms of attack effectiveness in Tables I,
II, and III. Note that in the following tables, we have bolded and
darkened the optimal values for the label-consistent scenario,
and underlined the optimal values for the label-inconsistent
attacks.

Specifically, our method significantly outperforms the SIG
and CL methods in terms of attack success rate on the MNIST
and CIFAR10 datasets, achieving the best attack performance
in label-consistent backdoor attacks. Compared to the label-
inconsistent backdoor attack, our method also achieves com-
parable attack results. Barni et al. [16] proved through experi-
ments that compared with label inconsistent backdoor attacks,
label consistent backdoor attacks need to destroy more samples
in order to be successfully executed, which deeply illustrates
the immense difficulty of backdoor attacks under clean label
Settings. In the face of this challenge, our research method-
ology has made significant breakthroughs. In addition, clean

data accuracy has been maintained at a very high level, which
fully demonstrates the stability and reliability of the proposed
method. On the GTSRB dataset, our method is slightly inferior
to the SIG method. We believe that this may be due to the higher
complexity of images and the larger number of categories of the
GTSRB dataset, on which subtle differences in attack strategies
may also cause significant variations in performance. Therefore,
although our method performs well on MNIST and CIFAR10,
the specific characteristics of the GTSRB dataset may be more
suitable for the attack strategy of the SIG method. In summary,
we consider that despite the differences in certain scenarios,
our approach still possesses a clear competitive edge overall.
Tables I, II and III provide strong evidence of the effectiveness
of our method, and further emphasizes the significant challenges
posed by backdoor attacks under clean label conditions.

In addition to the discussion on the effectiveness of the attacks
mentioned above, we further investigate the impact of the total
number of training rounds on the effectiveness of the backdoor
attacks. The experimental results, as shown in Fig. 4, indicate
that similar to other classical backdoor attack methods, the back-
door attack proposed in this paper reaches its peak success rate
after a few rounds of training and then remains relatively stable.
Through this experiment, we gain a more comprehensive un-
derstanding of the dynamic evolution of backdoor attacks and
further confirm the effectiveness of our approach.

C. Attack Stealthiness

Fig. 5 provides visual representations of backdoor images
generated by different attack methods. Through intuitive
analysis, we can draw several results. Firstly, the backdoor
images generated by BadNets, Blend, SIG, and CL exhibit poor
stealthiness, indicating that they are relatively easy to detect
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Fig. 4. Impact of total training epochs on backdoor attack effectiveness.

Fig. 5. Visual comparision of backdoor images generated by different attacks.

and identify. In contrast, Poison ink method demonstrates the
best stealthiness, making it extremely difficult to perceive.
Our method ranks second in terms of stealthiness, although
there is a certain gap compared to Poison ink, it still exhibits a
commendable effect.

In addition to intuitive visual observation, we also provide
objective measurements of stealthiness. The specific results are
shown in Table IV. On the MNIST dataset, our method achieves
optimal results on both SSIM and PSNR. This indicates that

the generated backdoor images have the highest level of struc-
tural similarity and image quality compared to the original
images. On the CIFAR10 and GTSRB dataset, our method’s per-
formance is slightly inferior. We speculate that this may be due
to a certain degree of deviation in the color space caused by the
re-parameterization sampling process employed in our method.
In our study, the primary purpose of the image reconstruction
network is to achieve label-consistent backdoor attacks rather
than perfect reconstruction of the original images. Therefore,
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TABLE IV
OBJECTIVE MEASUREMENTS OF STEALTHINESS ON MNIST, CIFAR10, AND GTSRB DATASETS USING SSIM AND PSNR METRICS: A COMPARISON WITH

BADNETS, POISON INK, SIG, AND OTHER ATTACK METHODS

TABLE V
GENERALIZATION FOR DIFFERENT MODELS ON MNIST, CIFAR10, AND GTSRB DATASETS

we opt for a relatively simple autoencoder network for rapid
validation and subsequent extension. This results in a certain
degree of reconstruction deviation, particularly in color-rich
and relatively complex datasets such as CIFAR10 and GTSRB.

We need to be aware that while Table IV provide some objec-
tive measurement criteria, the intuitive visual effects are more
able to simulate real-world scenarios. Referring to the intu-
itive results in Fig. 5, we can see that the backdoor images
generated by our method have high acceptability. Due to the
sample-specific characteristics of the embedded backdoor trig-
ger, it is difficult for humans to judge the image generated by our
method as a backdoor image without comparing it to the original
image. Additionally, in actual manual inspection process, it is
rare to have the original images for comparison and verification.
Therefore, the backdoor images generated by our method also
excel in terms of stealthiness. Taking into account both the tabu-
lar data and the intuitive visual effects, our method demonstrates
satisfactory stealthiness in most cases and can fully meet the re-
quirements in practical applications. In other words, our method
achieves a good balance between stealthiness and practicality.
In future research, we plan to explore the use of deeper and
more complex reconstruction network structures, such as Varia-
tional Autoencoder (VAE) or Generative Adversarial Networks
(GANs), to improve the quality and realism of reconstructed
images.

D. Generalization on Different Models

To demonstrate the generalization of our method on differ-
ent models, we conduct experiments using five other popular
networks. The specific results are shown in Table V.

From the tabular data, it is evident that our attack method
maintains high ASR on different models. This means that our
method achieves the desired attack effect on both the origi-
nal target model and other commonly used network structures.

Fig. 6. The effectiveness of re-parameterized noise sampling on CIFAR10
Dataset.

Such results are highly encouraging and further demonstrate the
adaptability and stability of our method in various scenarios.
Furthermore, it is worth noting that the backdoor introduced
by our method does not significantly impact the original perfor-
mance. This point is crucial for practical applications, as we need
to ensure that the target is attacked without negatively affecting
the overall performance of the entire system.

E. Ablation Experiment

1) The Effectiveness and Importance of Re-Parameterizing
Operations: In the preliminary experiments, to validate the
effectiveness of the re-parameterization operation, we com-
pare the classification confidences of images before and af-
ter using re-parameterized noise sampling. The experimen-
tal results, as shown in the Fig. 6, illustrate the classifica-
tion confidences obtained from the classification network for
original image inputs on the left side, and the classification
confidences after re-parameterized noise sampling on the right
side. It can be observed from the figure that after performing
the re-parameterization operation, the classification confidences
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TABLE VI
COMPARISON OF CDA/ASR WITH GAUSSIAN AND GUMBEL-SOFTMAX NOISE

MECHANISMS

TABLE VII
THE IMPORTANCE OF RE-PARAMETERIZED NOISE SAMPLING ON CIFAR10

DATASET

for classes other than the original class of reconstructed images
increase, and the distribution of classification confidences be-
comes noticeably smoother. This observation confirms the effec-
tiveness of the re-parameterization operation, as it successfully
interferes with the salient features of the images. Additionally,
besides the Gumbel-Softmax method, we also attempt the mech-
anism of Gaussian noise. The experimental results are shown in
Table VI, where the values before and after the slash (/) cor-
respond to CDA and ASR. It is evident from the table that the
success rate of attacks using Gaussian noise is inferior to that of
our proposed method.

Finally, aiming to demonstrate the importance of re-
parameterized noise sampling in our method, we conduct ab-
lation experiments on CIFAR10 dataset, and the experimental
results are presented in Table VII. As can be seen from the table,
removing the re-parameterization operation greatly reduces the
attack success rate. This indicates the crucial role of reparam-
eterization in maintaining a high attack success rate. Without
the reparameterization operation, the malicious model trained
by the user fails to complete the mapping of the specific input
trigger to the target label. Therefore, the reparameterization op-
eration is necessary and effective in our method, providing a
solid foundation for the success of the attack.

2) The Influence of Loss Function on Stealthiness: In the pro-
cess of re-parameterized image reconstruction, we utilize three
loss functions: Lrect, Lssim, and Lact. Here, we conduct experi-
mental analysis to investigate the impact of these loss functions
on image stealthiness. The corresponding results are shown in
Table VIII. From the table, it can be observed that using any
individual loss function alone fails to reach the expected quality
level in the reconstructed images. Using the Lrect loss function
alone can reduce reconstruction errors, but the image quality re-
mains unsatisfactory. Incorporating the Lssim loss function after
Lrect slightly improves the quality of the reconstructed images
but still falls short of the optimal outcome.

In summary, these three loss functions play different roles
in the image reconstruction process, and their combination is
crucial to obtain the best reconstruction results. The Lrect loss
function primarily focuses on reducing reconstruction errors and
minimizing the differences between the reconstructed and orig-
inal images. The Lssim loss function emphasizes the structural

similarity of the images, encouraging the reconstructed images
to closely resemble the original ones in terms of structure. On
the other hand, the Lact loss function primarily considers the
activation state of the target model, helping improve the per-
formance of the reconstructed images on the target model. By
simultaneously using the Lrect, Lssim, and Lact loss functions, we
can obtain the highest-quality reconstructed images that are op-
timized in terms of reconstruction errors, structural similarity,
and target model activation state.

3) The Influence of Poison Ratio on Results: The default poi-
son ratio in this article is 10%. However, to comprehensively
evaluate the effectiveness of backdoor attacks, we further ex-
plores other poisoning ratios on MNIST and CIFAR10 datasets.
The experimental results are shown in Fig. 7.

Previous experiments demonstrate that common backdoor at-
tacks only require 1–4% of poisoned samples to be effective,
while label-consistent backdoor attacks may require 10–30%
poisoning. By observing Fig. 7, we can see that the ASR does
decrease to a certain extent when the poisoning ratio is below
10%. However, it is encouraging to note that even with only 1%
of injected backdoor samples, our method still achieves 85%
ASR. This result is significant as it highlights the vulnerability
of the target model to our backdoor attack method, even at ex-
tremely low levels of backdoor injection. It reminds us of the
importance of prioritizing the security of the target model even
in scenarios where backdoor injection is minimal.

F. Resistance to Defense Techniques

In order to defend against backdoor attacks, researchers have
proposed many defense methods, including data-level defenses
and model-level defenses. Here, we select a classical method
from the two types of defense for experimental testing.

1) SentiNet Detection: As a data-level defense method, Sen-
tiNet detection is a highly regarded technique. It utilizes model
interpretability and target detection techniques as detection
mechanisms. By applying the Grad-Cam technique, it visualizes
the attention map of the target image to locate the backdoor trig-
gers. We conduct experiments on multiple attack methods, and
the experimental results are presented in Fig. 8. Particularly, the
performance in localizing trigger regions generated by BadNets
is outstanding. Furthermore, for Blend, Poison ink, and SIG at-
tack methods, the localized regions differ significantly from the
original image. In contrast, the target localization of our method
is basically consistent with that of the original image, indicating
that our approach has a significantly lesser impact on classifi-
cation performance than other methods. This also confirms the
ineffectiveness of the Sentinet defense method in countering our
attack.

2) Neural Cleanse: Potential triggers refer to samples in the
input that possess specific patterns or attributes, triggering back-
door behavior when these samples are input into the model.
Neural Cleanse utilizes gradient descent approach to search for
possible triggers and returns an anomaly score for each clas-
sifier. If the anomaly score is greater than 2, the classifier is
considered to be poisoned. The experimental results, as shown
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TABLE VIII
IMPACT OF DIFFERENT LOSS FUNCTIONS ON IMAGE STEALTHINESS

Fig. 7. Trade-off between CDA and ASR under different poison ratios.

Fig. 8. Using SentiNet to locate critical regions on different attacks.
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Fig. 9. The Defense Results using Neural Cleanse.

in Fig. 9, demonstrate that our poisoned model can bypass the
detection of Neural Cleanse.

VI. CONCLUSION

In this paper, we found that most existing backdoor attacks
excessively focus on the visual stealthiness of backdoor trig-
gers while neglecting the issue of matching between sample
label and image content. Although many backdoor images can
deceive the human visual system completely, their labels are in-
consistent with the image content, making them prone to de-
tection during image-label matching checks. To address this
problem, we propose a truly invisible backdoor attack method
that satisfies the requirements of both label-consistent settings
and visual invisibility. Using the technique of re-parameterizing
noise, we perturb the salient features of benign samples to gener-
ate re-parameterized images, making subsequent classification
more dependent on the added backdoor triggers. When adding
backdoor triggers, we draw inspiration from the concept of im-
age steganography based on DNN. We encode a specific string
onto the re-parameterized image to generate a sample-specific
backdoor image. Extensive experiments show the superiority of
our approach in terms of attack success rate, stealth and gen-
eralization. Moreover, the method in this article is resistant to
multiple defense techniques, demonstrating strong robustness.
In future work, we plan to explore new backdoor attack methods
within the framework of distributed learning, such as federated
learning.
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