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Abstract: Source camera identification is an important branch in the field of digital forensics. Most
existing works are based on the assumption that the number of training samples is sufficient. However,
in practice, it is unrealistic to obtain a large amount of labeled samples. Therefore, in order to solve the
problem of low accuracy for existing methods in a few-shot scenario, we propose a novel identification
method called prototype construction with ensemble projection (PCEP). In this work, we extract
a variety of features from few-shot datasets to obtain rich prior information. Then, we introduce
semi-supervised learning to complete the construction of prototype sets. Subsequently, we use the
prototype sets to retrain SVM classifiers, and take the posterior probability of each image sample
belonging to each class as the final projection vector. Finally, we obtain classification results through
ensemble learning voting. The PCEP method combines feature extraction, feature projection, classifier
training and ensemble learning into a unified framework, which makes full use of image information
of few-shot datasets. We conduct comprehensive experiments on multiple benchmark databases
(i.e., Dresden, VISION and SOCRatES), and empirically show that our method achieves satisfactory
performance and outperforms many recent methods in a few-shot scenario.

Keywords: source camera identification; few-shot; prototype construction; ensemble projection
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1. Introduction

With the rapid development of digital imaging equipment, camcorders, digital cameras
and mobile phones have been widely used in daily life. The collection, publication and
sharing of digital images have become a popular means of information transmission and
exchange in modern social networks. At the same time, several powerful and easy-to-use
digital image processing software have appeared to the public, which could be exploited
by criminals to tamper with digital images for certain uninformed purposes. Therefore,
the security of digital images has aroused widespread concern, and it has become more
and more important to accurately detect the originality, authenticity and reliability of
digital images.

Currently, blind forensics technology [1] plays an extremely important role in the field
of digital image forensics, and source camera identification (SCI) [2] is an important branch
of this technology. Source camera identification technology can establish the mapping rela-
tionship between multimedia images and physical devices, so as to establish the connection
between the digital world and real individuals. In the process of image generation, due
to the differences in device type, model, individual hardware and the internal generation
algorithm, there is a unique imprint on the image, which can then be used for source
identification. For example, Orozco et al. [3] found that the internal algorithms of images
taken by different types of devices are very different.

In addition, a big difference found by various SCI methods includes differences in the
extracted textural features. The original version of LBP was proposed by Ojala et al. [4].
Since then, there have been many derivative versions of the LBP driven by different
goals. MLBP [5] was proposed to reduce computational complexity; LTP [6] was proposed
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to improve noise robustness; and CLBP [7] was proposed to improve the identification
characteristics. In recent years, there have also been innovative methods for integrating
the above features. The authors of [8] proposed an LTP feature extraction method based
on MLBP, called MU-LTP. Fekri-Ershad et al. [9] integrated MLBP, LTP and CLBP to make
full use of the advantages of the three methods, which they called CLQP. In addition to the
above LBP-based feature extraction methods, orthogonal polynomials have also been used
to extract moments as features. Mahmmod et al. [10] proposed a fast computation method
of Hahn polynomials for high order moments.

In the presence of sufficient prior information, these existing methods can achieve
high identification accuracy. However, insufficient training sets (or few-shot sets) may
significantly affect their performance, which greatly limits their application to actual source
identification tasks. For example, in some urgent judicial forensics tasks, the source of an
image needs to be identified. However, due to the surge of digital imaging equipment
in recent years, it is time-consuming and laborious for judicial personnel to build a large
dataset of labeled samples; however, it is relatively effortless to obtain a small number
of samples for each type of equipment. Therefore, the question of how to attain higher
accuracy in identification results when labeled training samples are limited is a research
hotspot in the field of digital image forensics. Existing classical methods to solve few-shot
problems include data augmentation [11–13], model optimization [14,15], semi-supervised
learning [16–18], the attention mechanism [19,20] and so on.

In this work, we propose a novel identification method called prototype construction
with ensemble projection (PCEP) to solve the source camera identification problem in a
few-shot scenario. Firstly, we construct a prototype set through a limited number of training
images, then transform the prototype sets into new features through classifiers, and finally
obtain the identification results using an ensemble learning method. The proposed PCEP
method combines feature extraction, feature mapping, classifier training and ensemble
learning into a unified framework, which makes full use of the image information and
achieves satisfactory classification performance.

Our contributions are as follows:

• We propose an ensemble learning projection method based on prototype set construc-
tion (PCEP). This method extracts multiple image features through semi-supervised
learning, realizes prototype set construction and makes full use of the information of
few-shot samples.

• We use the prototype sets to carry out ensemble learning projections and realize the
transformation from image features to probability features.

• We introduce the ensemble learning voting strategy to obtain the final classification
results. Our comprehensive experimental results show that this method is superior to
many recent methods in a few-shot scenario.

2. Related Work

In this section, we review the existing literature in the field of source camera identi-
fication. The main research problem of source camera identification is how to effectively
distinguish the brand, model or individual of the device used for image acquisition. In this
study, we mainly conduct camera model identification.

The primary task of researching source camera identification is to have a clear under-
standing of camera imaging principles, so as to extract effective features and realize the
mapping between multimedia images and physical devices. Researchers have found that a
scheme based on sensor pattern noise [21–23] is a very effective means for source forensics.
Sensor pattern noise is generated by some inevitable manufacturing defects in the process
of sensor manufacturing. It is independent and can be used to identify different devices of
the same brand. Lukas et al. [21] first applied the use of pattern noise in the image sensor as
the inherent fingerprint of the device in source camera identification. In order to reduce the
impact of image content, Li et al. [24] arranged images according to different image content,
and assigned different weight coefficients to the pattern noise at different levels, which
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effectively suppressed the image content information in the texture area. Kang et al. [25]
could better interpolate images by using the content adaptive interpolation algorithm, espe-
cially to retain the edge information. In this way, the residual image obtained by difference
could better reduce the impact of the edge. The study in [26] made new improvements on
the basis of a local discrete cosine transform filter, making it more difficult for the filtered
image to maintain its original image quality, so that the residual image was less affected by
the image content. The experiments in [22,27] used the Fourier spectrum of mode noise to
suppress the peak value in the spectrum and reduce the impact of periodicity. In recent
years, in addition to the traditional methods based on sensor noise, there have been many
methods of image forensics using a neural network. Liu et al. [28] proposed an efficient
patch-level source camera identification method based on a convolutional neural network.
Hui et al. [29] proposed a multi-scale feature fusion network (MSFFN) to boost the sensor-
based source camera identification attribution. Zhang et al. [30] proposed an effective
source camera identification scheme based on a Multi-Scale Expected Patch Log Likelihood
(MSEPLL) denoising algorithm. Their experimental results show that the selection of small
image block samples also has a great impact on actual source classification results.

All of the above experiments, however, were performed in a training environment with
sufficient labeled samples. When there are insufficient training samples, the performance
of the above algorithms become greatly reduced. Common methods used to address
few-shot problems include data augmentation, semi-supervised learning, etc. The data
augmentation method aims to enhance the diversity of samples and provide sufficient
feature information by enhancing data in the sample space or feature space. At the same
time, semi-supervised learning uses unlabeled samples to strengthen the training model
and make it conform to the clustering hypothesis. Tan et al. [31] studied camera model
identification with limited samples, and used more abundant features to solve the problem.
Boney et al. [32] proposed that the parameters of embedded functions could be adjusted
with unlabeled data, and the parameters of classifiers could be adjusted with labeled data.
Hou et al. [20] proposed a cross-attention network, which uses the attention mechanism
and idea of iteration to make full use of the sample information in the query set to achieve
data enhancement. Schwartz et al. [33] proposed a Delta encoder that could synthesize
new samples in the feature space. Chen et al. [34] proposed a bidirectional network called
TriNet, taking advantage of semantic information of category labels and mapping sample
features to label semantic space for data enhancement, and then mapping this back to
the sample feature space. The above methods provide feasible solutions for practical
application scenarios with insufficient data, and also provided the inspiration for our work.

3. The PCEP Method

In order to build a more reliable model for camera model identification in the case of
few-shot samples, we proposed an ensemble learning projection method based on proto-
type set construction, called PCEP. The specific approach is shown in Algorithm 1. Firstly,
we extracted multiple image features from few-shot datasets to complete the pre-training of
a variety of classifiers. Then, we introduced semi-supervised learning to test all image sam-
ples, and these samples with higher posterior probability were selected to form prototype
sets. Subsequently, we used these prototype sets to retrain SVM classifiers, and took the
posterior probability of each image sample belonging to each class as the final projection
vector, namely, new classification features, and used new features to train multiple weak
classifiers. Finally, we obtained the classification results through ensemble learning voting.
The details of each step of the methodology are described in the following section.
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Algorithm 1 Prototype construction with ensemble projection (PCEP)

Symbols:
Sl : Labeled sample set; Su: Unlabeled sample set; S f ew: Labeled few-shot dataset; p:
Posterior probability of the sample; P: Prototype set; E: Ensemble projection vector

Process:
1. Extract CFA and LBP features from S f ew;
2. Train SVM classifiers based on partial feature information;
3. Construct prototype sets:
for s ∈ Sl ,Su do

Put s into SVM classifiers to obtain the posterior probability p
end for
Sort p in descending order and take the first r entries to form prototype sets P
4. Obtain ensemble projection features:
for i ∈ P do

Train the projection function based on i
Put s (s ∈ Sl) into the projection function to obtain the ensemble projection vector E

end for
5. Obtain the final classification result:
for j ∈ E do

Train the weak classifier based on j
Put s (s ∈ Su) into the weak classifier to obtain the sub-classification result

end for
Obtain the final classification result using ensemble voting strategy.

3.1. Constructing Prototype Set

In order to make full use of the information of few-shot datasets and obtain more prior
information in the case of limited samples, we introduced two kinds of image features and
implemented the construction of prototype sets according to semi-supervised theory.

The PCEP method introduces color filter array (CFA) features and local binary pattern
(LBP) features, which have different generalization capabilities. The invariance and equiv-
ariance of the two kinds of features complement each other to realize the optimal utilization
of few-shot datasets in SCI. For CFA features, we calculated the interpolation coefficients on
three color channels. According to the method in [35], a total of ((2k + 1)2 − 1)× 5 = 240
interpolation coefficients were obtained. The mean and variance of 240 dimensional CFA
interpolation coefficients were integrated into 480 dimensional CFA features. LBP is a
local operator that describes the textural features of an image, and the feature extraction
framework of one color channel is shown in Figure 1. It includes a prediction error domain,
spatial domain and wavelet transform domain. The radius of the LBP operator we adopted
was 1, so there were 28 = 256 modes of LBP features for 8 neighborhood pixels. According
to the dimension reduction model proposed by Ojala et al. [5], we extracted 59-dimensional
LBP features from the three domains. In addition, the image post-processing algorithms
corresponding to the red and blue channels were the same in most cases, with only one
needing to be selected. Therefore, from the red and green channels of the original image,
we extracted the LBP features in the spatial domain, prediction error domain and wavelet
transform domain. Finally, we obtained 59 × 3 × 2 = 354 dimensional LBP features.
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Figure 1. LBP feature extraction framework for one color channel.

According to prototype set theory [36], there are some items closer to the center than
others in the same scope. This fully proves that, among many unlabeled samples, some
samples are always more likely to belong to a certain class than others. Therefore, we
can calibrate the pseudo-labels for these samples, and further utilize their information
to obtain higher classification accuracy. In the actual operation of this study, we selected
multiple groups (2T) of labeled and unlabeled samples closer to the center from different
angles to form multiple prototype sets. The specific construction of the prototype set is
shown in Figure 2. In this paper, we first extracted LBP and CFA features from all labeled
samples, then randomly selected m-dimensional (abbreviated as m−D) features to train
several N-class classifiers. Therefore, a total of 2T group classifiers were trained; that is,
LBP features corresponded to T group classifiers and CFA features corresponded to T
group classifiers. Then, in a semi-surpervised manner, all samples were passed through
the classifiers to obtain the posterior probability belonging to each class. All samples were
sorted by the posterior probability (large to small), and the top r samples in each class were
selected to construct prototype sets. Finally, we had 2T prototype sets.

1 1 1

2 22

N N N

…

…

…

… … …

1 1 1

2 22

N N N

…

…

…

… … …

1 1 1

2 22

N N N

…

…

…

… … …

1 1 1

2 22

N N N

…

…

…

… … …

r

Prototype Set 1

Prototype Set 2T

Labeled

Few-shot

Dataset

LBP 

Feature

Random 

select m-D

Random 

select m-D

Random 

select m-D

SVM 1

SVM 2

SVM 2T

Test labeled and 
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Figure 2. Pipeline of constructing prototype set.

In addition, if some samples belonging to each class have similar posterior probabili-
ties, it is considered that these samples do not provide any available information. In this
study, we treated these samples as noise samples. According to information theory, if the
probability of a sample belonging to each class is equal, maximum entropy can be obtained.
The larger the entropy, the closer the sample is to the noise sample. Therefore, we discarded
some samples according to their calculated entropy. The calculation formula of entropy is
as follows:

entropy = −
N

∑
i=1

pilog2 pi (1)

In Equation (1), pi indicates the possibility of a sample belonging to class i.
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3.2. Training Ensemble Projection Features and Voting Classification

According to the 2T prototype sets, we obtained the ensemble projection features by
training. The specific process is shown in Figure 3. Different colors in the new feature
correspond to different classes of posterior probabilities. Each prototype set was used as a
new training set to train a new SVM classifier, thus obtaining 2T classifiers, which were
called projection functions. Then, labeled training samples are were mapped using the
projection functions to obtain the posterior probabilities, which were saved as new features.
As we used LBP and CFA features to construct the prototype sets, after projection, we had
LBP projection vectors and CFA projection vectors.
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Figure 3. Training ensemble projection functions used to obtain new features of images.

The above projection vectors were mapped by weak classifiers, which were obtained
by partial dimensions of sample features, so the idea of ensemble learning was introduced.
Ensemble learning [37] aims to integrate all sub-learning results and improve accuracy.
As shown in Figure 4, according to ensemble learning, we used the projection vectors to
train several classification models. Accordingly, we placed unlabeled samples and obtained
the test results. Then, according to the voting method of ensemble learning, we obtained
the final results.
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Figure 4. Ensemble learning to integrate all sub-learning results and increase the diversity of projec-
tion vectors.
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4. Experiments

In this section, we first introduce the experimental settings. Then, we evaluate the
effectiveness of PCEP in few-shot scenarios and analyze the experimental results in detail.

4.1. Experimental Settings

In this study, we tested the performance of the PCEP method on three public databases:
Dresden [38], VISION [39] and SOCRatES databases [40]. We selected 16 different classes
of equipment in the Dresden database, 10 different classes of equipment in the VISION
database and 10 different classes of equipment in the SOCRatES database. Among them,
the number of training samples was limited, ranging from 5, 10, 15, 20 and 25 samples for
each class. The test set consisted of 150 samples for each class. The specific information of
the selected equipment is shown in Tables 1–3.

Table 1. Dataset in experiments (Dresden).

Camera Model Abbr. Camera Model Abbr.

Canon_Ixus70 C1 Panasonic_DMC-FZ50 P1
Casio_EX-Z150 C2 Praktica_DCZ5.9 P2

FujiFilm_FinePixJ50 F1 Rollei_RCP-7325XS R1
Kodak_M1063 K1 Samsung_L74wide SL1

Nikon_CoolPixS710 N1 Samsung_NV15 SN1
Nikon_D70 N2 Sony_DSC-H50 SD1
Nikon_D200 N3 Sony_DSC-T77 SD2

Olympus_mju_1050SW O1 Sony_DSC-W170 SD3

Table 2. Dataset in experiments (VISION).

Camera Model Abbr. Camera Model Abbr.

Samsung_GalaxyS3 Sa1 Apple_iPhone6 Ap3
Apple_iphone4s Ap1 Lenovo_P70A Le1

Huawei_P9 Hu1 Samsung_GalaxyTab3 Sa2
LG_D290 Lg1 Apple_iPhone4 Ap4

Apple_iPhone5c Ap2 Microsoft_Lumia640LTE Mi1

Table 3. Dataset in experiments (SOCRatES).

Camera Model Abbr. Camera Model Abbr.

Apple iPhone 5s A1 LG G3 L1
Apple iPhone 6 A2 Motorola Moto G M1
Apple iPhone 6s A3 Samsung Galaxy A3 SG1
Apple iPhone 7 A4 Samsung GalaxyS5 SG2
Asus Zenfone 2 As1 Samsung Galaxy S7 Edge SG3

4.2. Experimental Results and Analysis

In this study, the baseline method using only LBP features was named LBP-SVM,
and the method using only CFA features was named CFA-SVM. The baseline using dual
features was named multi-SVM. After using the PCEP method, the method using only
LBP features, only CFA features and dual features were named LBP-PCEP, CFA-PCEP and
multi-PCEP, respectively.

In order to get closer to a real few-shot scenario, we set the number of training samples
for each class L as 5, 10, 15, 20 and 25. To determine the number of prototype sets T and
number of samples for each class in the prototype set r on the experimental effects, we
conducted detailed experiments on each database based on the above-mentioned L. It is
worth noting that in order to ensure the stability of the experimental results, we conducted
10 random training and testing sessions for all experiments, and averaged the results for
the final experimental results.
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We tested the effect of the number of prototype sets T on the experimental results of
the three databases, and the experimental results are shown in Figure 5. It can be observed
that with an increase in T, classification accuracy is improved, which proves that the larger
the number of prototype sets T, the greater the number of ensemble classifiers, and the
higher the accuracy. Therefore, after comprehensive consideration, we finally set T to be 50.
In addition, the number of training samples for each class L also affected the stability of
performance. When L is small, classification accuracy is low and fluctuates greatly.

(a)

(b)

Figure 5. Cont.
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(c)

Figure 5. Accuracy rate versus the number of prototype sets T for the three databases: (a) Dresden,
(b) VISION, and (c) SOCRatES.

We also carried out experiments on the number of samples for each class in the
prototype set r. As shown in Figure 6, the more samples of each class, the higher the
classification accuracy. Judging from the results of the multiple databases, the number of
samples for each class in the prototype sets r had a greater impact on the experimental
results than the number of prototype sets T. However, as r increased, the rise in accuracy
began to slow down. In an actual judicial evidence scenario, the number of unlabeled
samples for semi-supervised learning is usually not large, so we decided to set r to 50.

(a)

Figure 6. Cont.
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(b)

(c)

Figure 6. Accuracy rate versus the number of samples for each class in the prototype set r on the
three databases: (a) Dresden, (b) VISION, and (c) SOCRatES.

We compared the baseline method with the proposed PCEP method on the Dresden
database, and the results are shown in Table 4. In this paper, the highest value in the
same case is expressed in bold, and the following is similar. It was observed that multi-
PCEP achieved the best performance. Especially in the case of L = 5, compared with the
corresponding SVM method, the accuracy of the three PCEP methods (LBP-PCEP, CFA-
PCEP and multi-PCEP) was greatly improved, being 3.5%, 18.08% and 12.79%, respectively.
In addition, as L increases, the improvements in classification accuracy of the various
methods tend to be subtle, so the experimental results when L was greater than 25 are
not listed in this paper. The results fully demonstrated that the multi-PCEP method
could optimize the utilization of few-shot samples and had the highest accuracy rate of
source camera identification among all the methods. These results also demonstrate the
effectiveness of new features generated by the multi-PCEP method and ensemble learning
method in the optimization and utilization of few-shot samples.
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Table 4. Average accuracy of source camera identification on “Dresden Database”.

Method (%)
The Number of Training Samples per Class (L)

5 10 15 20 25

LBP-SVM 45.64 71.24 78.97 83.29 85.45
CFA-SVM 49.75 69.99 78.67 82.68 84.89
Multi-SVM 64.36 78.64 81.67 84.26 86.13
LBP-PCEP 49.14 68.62 78.41 82.01 84.17
CFA-PCEP 67.83 77.15 80.36 81.92 82.79
Multi-PCEP 77.15 85.26 87.62 88.50 89.09

To verify the generalization of our proposed method, we conducted experiments on
the VISION and SOCRatES databases; the experimental results are shown in Tables 5 and 6.
The PCEP method achieved the best performance on both databases. Especially in the case
of small L, PCEP significantly improved the accuracy compared with the three baseline
methods. For the VISION database, when L = 5, the multi-PCEP method improved accuracy
by 24.98%, 34.8% and 2.14% compared with LBP-SVM, CFA-SVM and multi-SVM, respec-
tively. On the SOCRatES database, the multi-PCEP method improved accuracy by 23.03%,
41.48% and 11.93% compared with LBP-SVM, CFA-SVM and multi-SVM, respectively.

Table 5. Average accuracy of source camera identification on “VISION Database”.

Method (%)
The Number of Training Samples per Class (L)

5 10 15 20 25

LBP-SVM 49.96 80.34 85.95 88.36 89.10
CFA-SVM 40.14 62.75 81.14 86.10 87.11
Multi-SVM 72.80 76.71 82.36 82.81 83.42
Multi-PCEP 74.94 83.99 86.59 88.46 90.51

Table 6. Average accuracy of source camera identification on “SOCRatES Database”.

Method (%)
The Number of Training Samples per Class (L)

5 10 15 20 25

LBP-SVM 38.56 67.24 76.06 79.67 81.78
CFA-SVM 20.11 57.13 66.76 74.04 77.06
Multi-SVM 49.66 57.53 67.45 73.13 75.81
Multi-PCEP 61.59 75.94 78.63 80.20 81.81

In order to verify the superiority of our PCEP method, we compared it with other
existing methods, including EP [31], the deep Siamese network [41], multi-DS [42], and MT-
DEM [43]. The comparison experimental results are shown in Table 7. We reselected 14 (in
Dresden database), 11 (in VISION database) and 10 (in SOCRatES database) camera model
classes with 10 training samples per class to keep consistent with the comparison methods.
The comparison experimental results showed that our method performed better than other
recent methods in the same experimental setup.

Table 7. Camera identification accuracy compared with previous methods.

Method (%) Dresden VISION SOCRatES

EP [31] 73.84 79.94 63.91
MTDEM [43] 75.16 80.49 64.84
Deep Siamese Network [41] 85.30 75.20
Multi-DS [42] 86.08 85.56 67.00
Multi-PCEP 87.06 84.84 75.94
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In addition, aiming to draw an analogy with the method based on the deep Siamese
network, we verified the impact of the number of camera model classes selected from the
databases on classification accuracy. The number of camera model classes in the Dresden
database varied from 14 to 27 (the whole dataset), and the number of classes in the VISION
database varied from 11 to 35 (the whole dataset). The experimental results are shown
in Figure 7. The experimental results showed that, as the number of models increased,
the accuracy gradually decreased. Our results followed the same trend as the method based
on the deep Siamese network.

(a)

(b)

Figure 7. Effect of number of classes on accuracy in two databases: (a) Dresden and (b) VISION.

In terms of time complexity, our approach also had significant advantages over deep
learning-based approaches.This is because our approach does not require a large number
of complex iterative calculations. For example, in the case of 14 classes, each training
round of the deep Siamese network method takes several hours, and multiple rounds are
needed to obtain better results, so the total training time is very long. The specific running
time of the PCEP method includes two parts: feature extraction and classification training.
When extracting features from a labeled few-shot dataset, it takes about 12 s to extract CFA
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features and about 21 s to extract LBP features for each image. Although the training time of
our method varies depending on the number of classes and the number of samples per class,
it is only tens to hundreds of seconds. We conducted time complexity experiments for two
databases, where 16 classes were selected from the Dresden database and 10 classes were
selected from the VISION database. The specific experimental table is shown in Table 8.
Therefore, our method is more suitable for fast analyses in practical situations.

Table 8. Time complexity of the PCEP method.

Database(s)
L (the Number of Training Samples per Class)

5 10 15 20 25

Dresden (16 classes) 155 247 406 596 853
VISION (10 classes) 62 103 165 238 341

Finally, we conducted a confusion matrix experiment on the three databases (Dresden,
VISION and SOCRatES databases, in that order) with L = 25, and the experimental results
are shown in Tables 9–11. The correct classification ratio in the confusion matrix is expressed
in bold, and the short dash in the table represents a classification probability below 0.01%.
On the Dresden database, we found that the classification accuracy of the SD1 and SD3
cameras were only 55.65 and 51.42%, respectively. It can be seen from the results that these
two models are confused with each other in the identification of image source, which is
the similar to results of the previous LBP-SVM and CFA-SVM methods. They are also
often confused in classification, that is, the same phenomenon that is being addressed
in this paper. The reason is that the two types of cameras adopt similar image post-
processing methods, which makes their images difficult to differentiate in classification.
According to the above confusion matrices, it was found that the multi-PCEP method is
applicable to different databases; that is, it is effective in different databases for camera
model identification of few-shot samples.

Table 9. Average confusion matrix obtained by 20 repetitions of SVM classification (Dres-
den database).

C1 C2 F1 K1 N1 N2 N3 O1 P1 P2 R1 S1 S2 SD1 SD2 SD3

C1 99.2 0.2 - - - - - - - 0.6 - - - - - -
C2 0.8 95.9 - 0.2 - - 0.1 - 0.2 - - 2.8 - - - -
F1 0.1 - 91.7 - 0.2 - 0.5 - 0.1 0.2 3.8 1.8 0.4 - 1.2 -
K1 0.5 2.3 0.2 92.1 0.1 3.1 0.3 - 0.1 0.6 - 0.4 - 0.1 - 0.2
N1 1.7 1.8 0.1 - 92.4 0.3 0.4 - - 0.7 0.2 2.4 - - - -
N2 0.3 1.0 - 1.4 0.4 90.6 3.7 - - 1.0 0.2 0.2 - 0.4 - 0.8
N3 - - 0.3 1.2 - 5.4 92.3 - - - 0.2 - 0.6 - - -
O1 - - 0.1 - - 0.2 0.9 96.5 - - - 2.3 - - - -
P1 0.2 0.5 - 0.5 - - 0.3 0.2 95.8 - - 2.0 0.5 - - -
P2 1.5 0.4 - 0.3 0.2 0.4 0.5 - 1.0 93.6 0.1 0.7 0.5 0.3 - 0.5
R1 - 0.1 4.8 - - 0.2 0.3 - 0.1 0.1 91.7 2.3 0.4 - - -
S1 - 2.3 1.3 - - - 0.4 0.1 0.1 0.7 0.3 94.7 0.1 - - -
S2 0.5 0.2 0.3 - - - 0.1 - - 1.8 1.0 0.5 95.2 0.2 - 0.2
SD1 0.6 0.8 - 0.1 - 1.3 0.8 - - 0.3 - - 0.6 55.7 0.4 39.4
SD2 - 1.2 0.3 - - 0.2 0.2 - - - 0.1 0.9 - 0.2 96.7 0.2
SD3 - 0.3 - 0.1 - 1.8 0.3 - - 0.5 0.2 - 0.4 45.0 - 51.4
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Table 10. Average confusion matrix obtained by 20 repetitions of SVM classification (VI-
SION database).

Sa1 Ap1 Hu1 Lg1 Ap2 Ap3 Le1 Sa2 Ap4 Mi1

Sa1 90.5 - 1.6 2.1 - 3.1 0.2 2.5 - -
Ap1 0.2 76.5 1.2 2.8 11.7 3.9 1.1 - 0.5 2.1
Hu1 0.2 0.8 86.5 4.7 0.1 6.1 1.0 - - 0.6
Lg1 - - 1.7 95.1 0.8 0.7 1.5 - - 0.2
Ap2 - 3.9 0.9 3.3 88.6 1.3 0.3 0.5 - 1.2
Ap3 0.3 1.2 1.1 0.9 4.0 90.5 0.3 0.4 - 1.3
Le1 - - - 3.7 0.8 0.1 94.8 - - 0.6
Sa2 0.5 - 0.9 1.6 0.2 0.2 - 96.6 - -
Ap4 - - - 0.7 0.1 0.1 - - 99.1 -
Mi1 - 6.6 0.2 3.0 0.3 1.8 - - 1.0 87.1

Table 11. Average confusion matrix obtained by 20 repetitions of SVM classification
(SOCRatES database).

A1 A2 A3 A4 As1 L1 M1 S1 S2 S3

A1 82.7 6.3 4.0 0.9 2.4 0.8 0.1 - 2.8 -
A2 6.4 74.8 6.5 4.2 1.8 0.4 3.2 1.1 0.8 0.8
A3 5.4 8.1 75.8 7.2 1.6 0.1 1.4 0.1 0.1 0.2
A4 3.9 5.7 9.2 73.7 3.3 0.2 1.8 0.8 1.4 -
As1 4.0 0.4 2.4 3.2 85.6 0.3 1.1 0.7 2.3 -
L1 0.3 0.8 - 4.5 5.1 83.1 3.2 1.0 2.0 -
M1 0.2 0.6 2.6 4.5 6.6 1.4 81.3 0.6 2.1 0.1
S1 - 1.2 0.5 0.4 2.4 0.1 0.8 91.2 1.9 1.5
S2 4.7 0.8 1.0 2.2 2.4 2.7 1.9 0.6 82.9 0.8
S3 1.0 0.7 1.6 1.4 4.3 0.8 1.2 1.6 0.3 87.1

5. Discussion

Aiming to solve the problem of few-shot sample classification in source camera iden-
tification, we proposed an ensemble learning projection method based on prototype set
construction (PCEP). We adopted semi-supervised theory to further optimize the few-shot
sample features, which effectively increased the available information and helped build a
more comprehensive and strong supervision model through ensemble learning. Empirical
results demonstrated that the PCEP method could effectively improve classification accu-
racy in few-shot scenarios, and showed higher performance than other existing methods.
In future work, we aim to try more feature extraction methods, and integrate different
feature extraction methods inspired by MU-LTP and CLQP. Secondly, in an era of deep
learning, it is important to consider trying to combine the features learned by CNN with
classic features to improve overall performance. In addition, determining how to ensure
reliable performance in cases of extreme few-shot samples (i.e., the number of samples of
each class is less than 5) is another hot topic of our work.
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