Journal of Information Security and Applications 94 (2025) 104210

journal homepage: www.elsevier.com/locate/jisa

Contents lists available at ScienceDirect

Journal of Information Security and Applications

’i’KlEBRMATDN

AND APPLICATIONS

L

Check for

Robust clustering federated learning with trusted anchor clients
Maozhen Zhang *™”, Yi Li?, Fei Wei "™, Bo Wang **, Yushu Zhang ¢

2 Dalian University of Technology, Dalian, China
b Alibaba Group, Hangzhou, China
¢ Jiangxi University of Finance and Economics, Jiangxi, China

ARTICLE INFO ABSTRACT

Keywords:

Federated learning

Model Poisoning attack
Malicious clients detection
Deep learning

Federated Learning (FL) is a distributed machine learning framework that has attracted widespread attention.
However, its decentralized architecture makes it vulnerable to attack with malicious data or model injection.
While existing methods are can defend against a limited number of malicious clients, the challenge of defending
against model poisoning attacks from a large number of malicious clients remains an unresolved issue. To
address these challenges. We propose the Robust Clustering Federated Learning with Trusted Anchor Clients,

which aims to provide clean global models for specified trusted client’s enterprise (trusted client as anchor
client), even in the presence of a substantial number of malicious clients. Specifically, it performs classification
by extracting clustering factors from the differences between anchor clients and other clients. It then identifies
trustworthy clusters as aggregation clusters to identify the most likely benign clients. Extensive experiments
on two datasets demonstrate that our method maintains robust defense efficacy, even in scenarios involving
numerous malicious clients (more than 50%) or highly non-independent, non-identically distributed data.

1. Introduction

Federated Learning (FL) is a decentralized machine learning
paradigm in which multiple devices or servers collaboratively train a
global model while retaining their raw data locally [1-8]. By design, FL
enhances data privacy and mitigates the need for centralized data col-
lection. Specifically, in each training round, clients receive the current
global model, perform local updates using their private data, and send
the resulting model updates to the server. The server then aggregates
these updates to obtain an improved global model. This updated global
model is then broadcast back to the clients for the next training
round [9,10]. Among the three canonical types of federated learning
(FL)—horizontal, vertical, and federated transfer learning—this work
focuses exclusively on horizontal FL. In horizontal FL, all participating
clients share the same feature space (i.e., data have the same attributes)
but possess different data samples. This setting has been widely adopted
in real-world applications such as next-word prediction [1,11], credit
scoring [12,13], and IoT device collaboration [14,15], and remains the
dominant scenario in contemporary FL research and practice.

In FL, each client trains a model on its own local dataset and
participates in collaborative training by uploading model updates to the
server. However, due to its distributed nature, FL is vulnerable to model
poisoning attacks [16-22], where malicious clients submit crafted up-
dates to compromise the global model. Based on the attacker’s goal,

* Corresponding author.

poisoning attacks are typically categorized as targeted or untargeted.
In targeted attacks, the adversary attempts to manipulate the model’s
behavior on specific inputs or labels—for example, by forcing the model
to misclassify particular instances (e.g., backdoor attacks). In contrast,
untargeted poisoning attacks aim to degrade the overall performance of
the global model without focusing on specific targets, often by injecting
noise or inconsistent gradients to induce convergence failure or accu-
racy drop. Such untargeted attacks are especially damaging, as they can
silently and broadly destabilize the training process. In this work, we
focus on detecting and mitigating untargeted poisoning attacks, which
remain a significant and underexplored threat in federated settings.
Untargeted poisoning attacks aim to hinder model convergence or
drive training toward a sub-optimal solution [23-29]. These attacks
can be realized through either data poisoning (e.g., manipulating local
datasets) or model poisoning (i.e., submitting crafted malicious updates
to the central server). Unlike targeted attacks that aim to manipulate
predictions on specific inputs, untargeted attacks broadly degrade the
overall performance of the global model, often in subtle ways that
make detection more challenging. To mitigate poisoning threats, a
variety of server-side robust aggregation strategies have been proposed,
particularly for targeted attacks. These methods seek to approximate
the true global update by applying statistical techniques such as the

E-mail addresses: maozhenzhang@mail.dlut.edu.cn (M. Zhang), liyi@dlut.edu.cn (Y. Li), feiwei@alibaba-inc.com (F. Wei), bowang@dlut.edu.cn (B. Wang),

zhangyushu@jxufe.edu.cn (Y. Zhang).

https://doi.org/10.1016/j.jisa.2025.104210

Available online 23 August 2025

2214-2126/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
https://orcid.org/0000-0002-4750-0841
https://orcid.org/0000-0002-8943-0335
mailto:maozhenzhang@mail.dlut.edu.cn
mailto:liyi@dlut.edu.cn
mailto:feiwei@alibaba-inc.com
mailto:bowang@dlut.edu.cn
mailto:zhangyushu@jxufe.edu.cn
https://doi.org/10.1016/j.jisa.2025.104210
https://doi.org/10.1016/j.jisa.2025.104210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2025.104210&domain=pdf

M. Zhang et al.

coordinate-wise median or trimmed mean [30-33]. However, exist-
ing approaches predominantly rely on server-side filtering and do
not incorporate client-side information or collaboration. Consequently,
they suffer from two major limitations: (1) their robustness degrades
significantly as the proportion of malicious clients increases, and (2)
they exhibit poor performance under non-IID data distributions, where
natural variations among benign client updates can resemble adver-
sarial behavior. Designing effective defenses in federated learning thus
remains a critical challenge, particularly under realistic assumptions of
data heterogeneity and partial trust.

To address these challenges, we propose TACRC-FL (Trusted An-
chor Client-guided Robust Clustering for Federated Learning), a novel
cluster-based defense against model poisoning attacks. TACRC-FL lever-
ages gradient-space representations of client updates to partition par-
ticipants into distinct clusters, guided by trusted anchor clients that
help distinguish between benign and malicious updates. Specifically,
TACRC-FL introduces a novel gradient norm vector computation
method, guided by the parameters of one or more trusted anchor
clients. These anchor clients upload authenticated model updates
through a tamper-proof verification mechanism, preventing hijacking
or tampering. By using the anchor-provided reference, client updates
are projected into a feature space, enabling classification into clusters.
Each cluster is then assigned a trust score, and global aggregation is
conducted with respect to these trust scores. A closely related method is
FLTrust [34], which requires the server to hold an auxiliary dataset for
maintaining a clean reference model. However, this assumption violates
the standard FL paradigm, which prohibits direct access to raw data on
the server side. In contrast, TACRC-FL requires no server-side dataset
and remains effective under non-IID data distributions and high ratios
of malicious participants. We consider a realistic deployment in which
several state-owned (official) banks act as the initiating organizers
of a federated-learning consortium together with smaller regional or
privately-owned banks. The state-owned banks tightly audit and control
the devices under their administration, so the clients belonging to them
can serve as trusted anchor clients. In contrast, clients operated by
smaller private banks undergo less stringent vetting and may include
malicious participants. By letting the anchor clients from the state-
owned banks guide the verification and aggregation processes, the
consortium can effectively mitigate poisoning attempts originating
from untrusted organizations while still benefiting from their data
contributions, ultimately yielding a more robust global model.

In summary, we make the following contributions:

+ We propose a Tamper—-proof Verification mechanism that
applies cryptographic key agreement to protect client model pa-
rameters in FL.

We introduce a federated gradient norm vector computation
method, guided by Anchor client model parameters. Based
on this, we construct client clusters by measuring gradient feature
discrepancies between anchor clients and other participants.

We leverage trusted clients to identify and aggregate benign
clusters, yielding a coarser yet robust global model while reducing
communication overhead.

We conduct extensive experiments on two benchmark datasets to
evaluate the performance and robustness of TACRC-FL against
several state-of-the-art model poisoning attacks. Our results show
that TACRC-FL achieves up to a 10x improvement in defense
effectiveness compared to existing approaches.

2. Background
2.1. Federated learning
In this work, we consider a typical FL setting as used in [1], which

involves a central server s and N clients. Each client i € [A] holds a
local dataset D;. The size of the dataset is denoted as |D;| = »;. Each

Journal of Information Security and Applications 94 (2025) 104210

local dataset may observe a different distribution, i.e., the local datasets
are non-IID. The objective of FL is to coordinate the clients (with their
local data) to train a global model w. At each training iteration ¢, we
use w, to represent the global model and w! to represent the local
model updated by participant i. The server updates the global model
by aggregating the local model updated with learning rate #.

Specifically, at the t-iteration, the FL system repeats the follow three
steps to obtain the global model w, from the current w,_,.

Step 1. The server sends the global model w,_, from the previous
round to the server.

Step II. Each client performs its local learning process with its local
training data and the received global model w,_;. During the local
learning process, each client uses its own private data for random
gradient descent:

wf = w;_l +n;- VL (w,_;D;)

where 7; is the learning rate of local model training and VL,(w,_;; D;)
denotes the gradient of local optimization loss. When the local training
is complete, the client sends the latest local model w! back to the server

N
w,=w,_+n- Z(wﬁ —w,_y), fort=1,...,T.

i=1
Where 75 is the learning rate of global model, it is usually calculated
based on the number of local clients |A'| and the number of samples
|D;|.

Step III. The server use aggregator A to aggregates local model

updates obtain the updated global w,.

2.2. HDBSCAN

The density-based spatial clustering of noise applications (DBSCAN)
[35] is a clustering algorithm that uses a predefined maximum distance
to determine whether two points belong to the same group. Extending
DBSCAN, the Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) [36] determines a different maximum
distance for each clustering group according to the density of different
points. HDBSCAN avoids setting the maximum distance and the number
of clusters in advance and can cluster adaptively in the iteration.

2.3. Byzantine-attack

The vulnerability of FL gives malicious clients ample opportunity
to disrupt training. Attackers can poison local updates either by in-
jecting new adversarial clients or by compromising originally benign
ones. Most robust aggregation defenses—such as Krum, Trimmed Mean,
and Median—assume that fewer than 50% of participants are ma-
licious [30,31], yet scenarios in which adversaries form a majority
remain largely unexplored. Recent adaptive attacks further exploit this
gap: by tuning the magnitude and direction of poisoned gradients to
mimic the benign majority, they can evade existing filters and still im-
pair convergence [26]. Empirical studies confirm that seemingly simple
strategies—such as adding bounded random noise [23] or inverting
the signs of selected client updates [24]—can significantly degrade
the performance of aggregation algorithms including FedAvg, Krum,
Trimmed Mean, and Median. Consequently, even with current defenses
in place, untargeted poisoning continues to pose a serious threat to
model integrity and accuracy in federated learning.

2.4. Byzantine-robust FL methods

The model updates in Byzantine-robust FL are typically high-dim-
ensional vectors, and identifying benign updates involves analyzing the
relationships among these vectors. However, the excessive dimension-
ality of model updates incurs significant computational overhead. As
previously mentioned, Krum [30] requires computing the Euclidean



M. Zhang et al.

Journal of Information Security and Applications 94 (2025) 104210

Algorithm 1 TACRC-FL

Algorithm 2 Tamper-Proof Verification

1: Input: cluster C s client model w;, anchor model w I
2: Parameter: number of iterations T’
3: Output: final global model w*
4: fort=1to T do
5: Verify if anchor model w; is tampered using Algorithm 2
> Tamper-proof check

6: if verification passed then
7: Cy,...,C, « Cruster(w;, wj) > Use Algorithm 3
8: Cagg < DeTECTCLUSTERS({C, ..., C; }) > Use Algorithm 4
9: w* < FEDAVG({w; | i € Cygg}) > Aggregate selected client
updates
return w*

distances between each client and all others, selecting the one with
the smallest sum of distances to the N—f—2 nearest neighbors, where
f is the number of malicious clients. Trimmed Mean [31] requires
sorting values at each coordinate and removing extreme values, while
Median [31] takes the coordinate-wise median across clients.

Detecting abnormal (i.e., potentially attacked) model updates can
be formulated as a classification task. A natural approach is to adopt
clustering-based classification [32,33,37,38]. Sattler et al. [33] ex-
plored the use of clustered FL under Byzantine threats by partitioning
client updates based on cosine similarity. However, this method is
only effective when the number of malicious clients is small. Tao
et al. [32] proposed a robust aggregation algorithm based on IFCA
(Iterative Federated Clustering Algorithm) [39], which incorporates
coordinate-wise Median and Trimmed Mean into IFCA to enhance
robustness. Nevertheless, the high dimensionality 4 still introduces
significant learning challenges. Our proposed aggregation factor ad-
dresses this issue by reducing the dimensional burden encountered
during clustering. However, both of the above methods still require full
pairwise computation over all client updates. Moreover, they remain
effective only when the proportion of malicious clients is relatively
small; their performance degrades significantly when this proportion
increases.

Some defenses have been proposed to handle large-scale malicious
participation. For instance, EVA Detection [40] trains an autoen-
coder using an auxiliary dataset and detects potential attacks by com-
paring discrepancies between generated and real data. FLTrust [34]
relies on a server-side trusted dataset for validating updates. However,
these approaches typically depend on external datasets obtained out-
side the federation, which violates the core principle of FL—namely,
that the server should not have access to raw client data.

3. Framework of TACRC-FL

3.1. Threat model

We follow a FL setup where a central server coordinates multiple
distributed clients. Among the clients, an arbitrary number may be
compromised and controlled by the adversary. The adversary’s capa-
bilities include full control over its own local data and model updates.
However, the adversary has no access to the data or model parameters
of benign clients. The adversary aims to influence the aggregation of the
global model by manipulating its locally trained models. Specifically,
the attacker’s objective is to degrade the overall accuracy of the global
model or steer its convergence toward a sub-optimal point.

1: Input: client u, masked model [w/*®'], location index I,,4,,, mask

function H(-) > Input parameters

2: Output: Boolean value (True / False) > Verification result
3: mask, < H(S*) > Generate mask using secret key
4: wloeal  [wlocal] — mask, > Recover the original local model
5: (SPk, §%%) « KA.gen(w!oea! I, ;.0 > Generate key pair
6: S, < KA.agg(SPk, 55%) > Compute the agreement shared key
7: if 8§, = S, then > Check authentication match
8: return True > Verification passed
9: else

10: return False > Verification failed

3.2. Overview

As depicted in Algorithm 1, the workflow of TACRC-FL consists of
the following steps: (1) Perform tamper-proof verification to determine
whether the anchor model has been modified. (2) Extract clustering
factors and perform clustering based on the differences between trusted
anchor model updates and other client updates. (3) After clustering,
aggregate the client updates within each cluster. Anchor clients are
then used to evaluate the aggregated cluster models and assign trust
scores. (4) In each iteration, select the cluster with the highest trust
score, and use predefined thresholds 6, and §, to determine additional
trustworthy clusters. Clusters whose trust scores fall outside these
threshold ranges are considered potentially malicious and are excluded
from the aggregation list. An overview of TACRC-FL is shown in Fig.
1, and the full procedure is summarized as pseudo-code in Algorithm 1.

3.3. Tamper-proof verification

We employ the key agreement method [41] to implement a tamper-
proof verification as depicted in Algorithm 2. In Fig. 2, we present the
flowchart illustrating the process of key agreement and model masking
in the proposed algorithm. Here, u € N is the client, s is the server.
S represents a secret key, h and g are parameters in key exchange
protocol, h is a randomly selected large prime number, and g is an
integer selected as a generator in a finite field.

Key Agreement. The trusted anchor client u engages in key agreement
with the server s to obtain the shared key S, ,. Firstly, the trusted client
and the server generate their respective private keys, denoted as S;fk
and S, respectively. Unlike the server, the trusted client randomly
selects the parameter location of the model. Clinet generate A using the
values of these model parameters. Then, it calculates the private key
Ssk using the function KA.gen and records the index of the parameter
location used as I;,,,,. Subsequently, the trusted client and the server
compute their respective public keys ka and ka from their private
keys and then exchange them. Upon receiving the other party’s public
key, each party calculates the agreement shared key S, ;.

Mask Model and Model Tampering Verification. The trusted client
applies a random mask to the model using the shared key S, ;, as
illustrated in (1) and (2). The mask is generated from the shared key
S, s and added to the model parameters to obtain the masked model.

mask, = Hw'*" s, ), @)
[wlocal] — wlocal + mask (2)
u — %u u

here, H(-) is the mask generation function. After applying the mask,
the trusted client sends the masked model [wf“’“” ], mask generation
function H(-), private key calculation function KA.gen, and parameter



M. Zhang et al.

Journal of Information Security and Applications 94 (2025) 104210

NN P PSRN P SRRSO TS TN DU N TS TR B NN Y Peisn 5 B M.

e N R S T—— : ____________ ;
| . ¥ (B 1
[ Client Anchor client (B Server 1 I :
1 = 1! ;

m Anchor global model 1 |
A B e s e
! -=a — .@; Cluster 1: {1,3,5,6} \ A ! I
\ . @ 1 ey | Cluster 2: {2 , 10, 11} | :@" 50% 7 ' torsy U}
! [ | Cluster 3: {12,13,14,15, ...} | v cos =033 | gy |
| : D ®@ ; - - ] "
] i 1 [}
" Eh @, ' s12% | 3
R o R1. womost ] | B 1)
| | 1 | =1 0]
| 19 | Qo !
1 @7 1 @ ® = an X! 1
: ; @ ! : Q8 cos6 = —0.04 i : :
1 - 1
1 S U 1
, e ] ]
! 1

@ Aggregate anchor model
(@ Aggregate the model of each cluster
() Global model of aggregation clusters according to trusted scores

(2) Calculate clustering characteristics according to the anchor model
(@ Distribute the cluster model to the anchor client

Fig. 1. Overview of TACRL-FL.

Server

mask(w, Sy ) = [w

KA.gen — SSSk,ka

KA.agree - Sy ¢

local’

Fig. 2. Key agreement and model masking.

index I;,,,, to the server. The server calculates the mask by using the
shared key S, ; and removes the mask from the model to obtain w!*¢’.
It then employs the key calculation function KA.gen and the parameter
index I,,4., to compute the agreement shared key S, between the
trusted client and the server. To verify that the trusted client has not
been tampered with, the consistency between S, ; and S, is checked.
In addition, the mask of the model prevents malicious clients from
accessing the trusted model so that malicious clients do not know
the real update direction of the clean model to design more complex
attacks. The server checks whether S, and .S, ; are the same. The same
calculated key means the model parameters have not been tampered
with.

3.4. Clustering factor extraction and clustering

In FL, it is widely acknowledged that the distribution of model
parameters reflects the variation in model training. The distinction
between malicious and benign models lies in malicious participants
injecting harmful information into the model, disrupting the model’s
convergence, or injecting backdoor tasks. Malicious attacks aim to

make the global model deviate from the optimal model w*, forcing the
global model to converge toward a secondary solution or diverge. These
attacks result in model updates that deviate more from the normal
model or exhibit larger update gradients, as depicted in Fig. 3(a).

Based on the considerations above, we use a trusted cluster model
as an anchor to indicate the correct direction. The specific process of
clustering factor extraction is shown in Algorithm 3. As presented in the
algorithm, we calculate the angle between the trusted model direction
and other unknown attribute models to avoid deviating from the correct
direction during model updates and optimization:

(&, 8)

4= 3
Colglel

here, § denotes the aggregated gradient of the anchor cluster, and
g; is the update from client i. We further include a locality measure
Neighbor(g;, k), defined as the average #,-distance to the k nearest up-
dates, to capture neighborhood structure. Because benign clients share
the same optimization goal as the anchor, their updates are mutually
similar, whereas malicious updates deviate significantly. By combining
g; and the k-NN distance, our clustering step groups updates with
similar orientations and magnitudes, as depicted in Fig. 3(b). Clusters



M. Zhang et al.

Algorithm 3 Clustering Factor Extraction and Clustering

1: Input: local models {wj}i]i“l, anchor models {w{}jvz"l, previous
> Models at iteration ¢

> Used for k-NN distance

global model w;,_,
2: Parameter: k (nearest neighbors)
3: Output: clusters C = {C,, ..., (;}

Na
4 W, — w,_y + NLQ z wrlf . > Anchor-guided pseudo model
J=l1
P gl —wey
: fori < 1to N, do

> Anchor gradient norm
> Process every non-anchor client
> Client i gradient norm

Agi < 1g—-¢ill» > Distance to anchor gradient
(& &)
9 Tl g
10: d¥ « NEIGHBOR(g;, k)
11: Xi <« {Ag," 4> dk}

i

5
6
7: g < W,i w1l
8
9

> Cosine similarity with anchor
> k-NN distance in gradient space

> Feature vector for clustering

12: Cy,...,C; < HDBSCAN({X, ,-}I,Z“l) > Density-based clustering

13: return C,...,(; > Return final clusters

yus model Malicigus model

ad
Vve“-‘%“ =

(b) The gradient of the least k nearest neighbor

Fig. 3. Anchor client and neighbor distance.

that closely align with the anchor direction are deemed benign; those
that do not are flagged as potentially malicious for further scrutiny.

d,',j =4/(g - gj)za
. k C))
d{ = min . Z d;;

where d, ; is the distance between the model updates gradient g; and
other model updates gradient g;, dik is the k nearest distance of the
model updates gradient g;. Additionally, to prevent adversarial attacks
that carefully manipulate the distances between models, we employ
the update gradient difference between the anchor model and each
unknown model as a clustering factor. This approach is intended to
enhance the system’s robustness against potential attacks. The model
update gradient is calculated by (5).

& = llw, —w,_ll,,

. (6]
4g; =118 — &ll2»

Journal of Information Security and Applications 94 (2025) 104210

here, g is the anchor model update gradient. To avoid the need for
adjusting the neighborhood radius of DBSCAN in each training round,
we adopt HDBSCAN to form clusters, eliminating the requirement for
setting the density threshold e in DBSCAN.

3.5. Benign model updates detection

We use clustering factors to partition models with unknown trust-
worthiness into multiple clusters. The model updates within each clus-
ter are aggregated to form a cluster model, which is then sent to the
anchor client for evaluation. The trust score s is assessed using the
anchor client’s local training set:

st~ Anchor_Client_Evaluate(w{), 6)

where Anchor_Client_Evaluate(-) denotes the evaluation of the cluster
model w{ on the anchor client’s private dataset. The resulting trust
scores from all anchor clients are then uploaded to the server and
averaged. Simultaneously, we compute the cosine similarity between
each cluster model’s update and the anchor model’s update.

Based on the averaged trust scores and cosine similarities, we apply
threshold values §;, ,, and 85 to filter out suspicious clusters. Clusters
that meet the filtering criteria are added to the aggregation list. The
objective is to identify and exclude potentially malicious updates from
being aggregated, ensuring that the final global model is primarily
influenced by benign participants.

The full detection process of benign cluster model updates is de-
scribed in Algorithm 4. Specifically, TACRC-FL leverages anchor
clients to assess and select clusters with high confidence in their
integrity. This process serves as a robust pre-selection step for FedAvg,
ensuring that aggregation in each round only includes the most reliable
clusters,

Algorithm 4 Benign Model Updates Detection

1: Input: Clusters {C,,...,C;} of client updates

2: Parameter: anchor clients A = {1, ..., N,}; thresholds §,, 6,, 53
3: Output: Aggregation candidate list C,qq
4: for each cluster C;, j=1to/ do
5: wf —w,_|+n Ziecj(w; —w,;_;) > Compute pseudo aggregated
model for cluster
6: Store all cluster models: w{ —{wl, ... W}
7: for each cluster C;, j=1to/ do
8: for each anchor client a =1 to N, do
9: s{; — ANCHORCLIENTEVALUATE(W{ ) > Evaluate model by anchor
client
10: ¥« NLH X ca S > Mean anchor score for cluster
11: cosd « \c]7 Ziec/ cos 9{ > Mean cosine similarity
12: § « max{El, ,E’_} > Max anchor score across clusters

13: cosf < max{cos 5/} > Max mean cosine similarity
14: for each cluster C;, j=1to/ do

15: if cos& = cosd then

16: Add C; to Cyqg > Best-aligned cluster

17:  elseif 6, <cosf—cosd and 5—¥ <6, and ¥ > 5, then

18: Add C; t0 Cyyg > Cluster passes adaptive threshold test
return C,g,

4. Performance evaluation

4.1. Experimental setup

Datasets. We used two image classification datasets from different
mains in out experiments.



M. Zhang et al.

Table 1

Model architecture used on MNIST.
Layer type Size
Conv + ReLU 10x5x%x5
Max pooling 2x2
Conv + ReLU 20x5%5
Max pooling 2x2
FC + ReLU 50
FC (Logits) 10

Table 2

Model architecture used on CIFAR-10.
Layer type Size
Conv + ReLU 32x3x%x3
Max pooling 2x2
Conv + ReLU 64x3x7
Max pooling 2x2
FC + ReLU 512
FC (Logits) 10

Table 3

Accuracy (%) under various model poisoning attacks on non-IID datasets (¢ = 0.5).

Our method TACRC-FL consistently outperforms other defenses across different attack
types.

Dataset Method FedAvg MKrum Trim Median RFA RLR Ours
No Att. 98.57 9819 98.21 97.97 97.91 98.11 98.28
Fang 97.22 87.72 93.84 93.72 09.76 93.26 98.41
LIE 93.09 10.35 87.96 92.28 97.42 93.44 98.45
MNIST Min-Max 97.77 95.34 96.47 95.68 09.80 96.92 98.50
(a = 0.5) Min-Sum 97.76 96.80 95.90 93.76 79.87 97.17 98.48
Sign. 97.24 97.73 9691 97.12 97.03 96.94 97.96
Add. 94.97 98.41 98.12 9798 97.98 97.41 98.34
Avg. 96.66 83.50 95.34 95.50 69.96 96.17 98.34
No Att. 60.26 55.38 56.90 57.73 45.13 58.01 57.63
Fang 52.52 36.98 44.30 36.20 38.28 40.37 58.34
LIE 42,92 23.08 30.58 29.13 44.98 31.80 57.69
CIFAR10 Min-Max 53.25 44.84 51.17 54.53 43.27 55.81 57.07
(@ = 0.5) Min-Sum 51.99 51.07 53.23 49.48 47.97 57.77 57.96
Sign. 44.72 5576 49.26 52.24 41.99 50.40 57.20
Add. 26.42 5822 5878 55.86 50.57 32.66 57.28
Avg. 47.44 46.47 49.17 47.88 44.59 46.68 57.59

+ MNIST: 10-class handwritten digit image classification dataset
consisting of 60,000 training samples and 10,000 testing samples.

« CIFAR10: The CIFAR10 dataset consists of 60,000 32 x 32 color
images in 10 classes, with 6000 images per class. There are
50,000 training images and 10 000 test images.

Non-IID. To simulate different degrees of non-IID data distribution
among these clients, we used the Dirichlet distribution to sample the
data. The parameter « of the Dirichlet distribution controls the level
of heterogeneity in the labels. Smaller values of «a resulted in greater
label heterogeneity. Unless otherwise specified, we set « = 0.5 in our
experiments.

Model. We trained on the above two datasets to verify the versatility
of TACRC-FL. Specifically, for the MNIST dataset and CIFAR10 dataset,
we employed a convolution neural network (CNN) for training. The
architecture of the CNN model was detailed in Tables 1 and 2.

FL Setting. In each round, 128 clients participated in the training. Each
round, we randomly sampled 32 clients to evaluate the impact of attack
and defense on model training. Each client trains 5 epoch locally, batch
size of B = 16 for MNIST and B = 64 for CIFAR10. In addition, we
constructed a rigorous adversary scenario by configuring 2 parameters,
i.e., malicious client number and non-IID degree (this is determined
by the parameter « sampled by dirichlet). Unless otherwise specified,
our experiments were performed under the settings of 8 malicious
client clients and « = 0.5. In addition, We set thresholds §; = 0.05,

Journal of Information Security and Applications 94 (2025) 104210

Table 4

Defense performance against adversarially crafted Byzantine attacks under non-IID data
partitioning (¢ = 0.5). Our proposed TACRC-FL achieves consistently strong results
compared to state-of-the-art baselines.

Dataset Attack FedAvg MKrum Trim Median RFA RLR  Ours
MNIST No Att. 98.57 98.19 98.21 97.97 97.91 98.11 98.28
(a = 0.5) Adv. 53.88 98.32 96.37 96.49 97.45 79.36 98.41
CIFAR10 No Att. 60.26 55.38 56.90 57.73 45.13 57.01 57.63
(x = 0.5) Adv. 10.00 58.29 41.49 51.52 33.45 10.00 57.80

8, = 0.05 and 8; = 0.2 in TACRC to control aggregation of clusters. It is
worth noting that in order to reduce the amount of computation, our
method only uses the neuronal values randomly sampled by the fully
connected layer when calculating the nearest neighbors. The features
are normalized before clustering.

Attack Settings. We consider seven types of untargeted model poi-
soning attacks. In each case, the attacker is assumed to have access
to the gradient of the benign client’s local model update. The attacks
include: (1) Fang [24], (2) LIE [42], (3) Min-Max, (4) Min-Sum,
(5) Sign Flipping (abbreviated as Sign.), (6) Additive Noise (Add.),
and (7) the average performance across all attack types (Avg.). These
abbreviated names are used consistently in our result tables for clarity.
In the following, we briefly describe the implementation details of each
attack.

Fang. Is an optimization based model poisoning attack. Specially,
the adversary uses the update gradient of the benign model to
calculate the average u, and then solves for the scaling coefficient
4 and direction —sign(-). 4 is used to narrow the update gradient
in the direction of malicious updates [24].

LIE. The adversary computes the average y and standard devia-
tion o of benign model gradients. The resulting malicious update
is u + 20. The calculated coefficients are used to add noise to
each dimension of the model update to influence the final global
model. And ensure that the malicious model gradients is within
the monitoring range of defense [42].

Min-Max. Use the maximum sum of squares of any two benign
models to update the gradients as an upper bound. Compute the
malicious gradient, that the sum of the square of the malicious
gradient update and the gradient update of any client does not
exceed the upper bound [26].

Min-Sum. This method Compute the sum of squares of all benign
gradients as an upper bounded. Ensure that the maximum sum of
the squared distances of the distance between the malicious gra-
dient and all the benign gradients does not exceed the previously
calculated upper bound [26].

SignFlipping. SignFlipping Attack is an untargeted attack, where
the malicious clients flip the signs of their local model up-
dates [43,44]. Since there is no change in the magnitude of the
local model updates, the SignFlipping attack can make hard-
thresholding based defense fail [45].

AdditiveNoise. Add random noise to each dimension [43,44].
This approach does not consider benign update gradients and
server aggregation. It is easier to detect, but more impact on the
model.

Adversarial lens. This type of method adopts an adversarial
perspective, where an alternating minimization strategy is used
to iteratively optimize both stealthiness and attack efficacy. By
balancing the trade-off between invisibility and adversarial ob-
jectives, the attack becomes more effective and harder to de-
tect [46].

Robust aggregation. We compared our approach, TACRC-FL, with
four aggregation rules [1,30,31], and conducted experiments on multi-
ple attacks using two datasets. The aggregation rules considered were
FedAvg [1], MKrum [30], Trimmedmean [31], Median [31], RFA [47]
and RLR [48]



M. Zhang et al.

ACC

Journal of Information Security and Applications 94 (2025) 104210

Cifarl0 NoAtt

1.0

0.8

35 --- FedAvg —=— Median

“f MKrum —— TACRC
—— Trimmedmean

0'OO 20 40 60 80 100

Epoch

(b) CIFAR10

Fig. 4. w/o Attack under MNIST and CIFAR10 with a =0.5.

1.0 MNIST NoAtt
0.8
0.6
Q
o]
<
0.4
0.2 -—- FedAvg —=— Median
' MKrum —— TACRC
—— Trimmedmean
0'00 20 40 60 80 100
Epoch
(a) MNIST
10 Cifarl0 Fang
0.8
Q
Q
<
—— Trimmedmean
0'00 20 40 60 80 100
Epoch
(a) Fang
10 Cifarl0 MinSum
0.8
Q
Q
<
—— MKrum —— TACRC
—— Trimmedmean
0'00 20 40 60 80 100
Epoch
(¢) Min-Sum
1.0 Cifar10 AdditiveNoise
0.8
Q
Q
<

I o Ak
LV NI

A ARININAS A e A A

02! -—— FedAvg —=— Median
“f — MKrum —— TACRC
—— Trimmedmean
0'00 20 40 60 80 100
Epoch

(e) AdditiveNoise

ACC

ACC

ACC

1.0 Cifarl0 LIE
0.8
0.6
0.4 PN T [T r/\«‘\"“’\Vw"\\,V\,\/-v\/x"’
T W] v
A ' PRI AV SV, g2 SN S R P o W
0.2 W SR FedAvg —— Median -
CPTT — Mkrum —— TACRC
—— Trimmedmean
0.0
0 20 40 60 80 100
Epoch
(b) Lie
1.0 Cifarl0 SignFlipping
0.8
0.6
S

o .
WA N

0.4
0.2f --- FedAvg —=— Median
' —— MKrum —— TACRC
—— Trimmedmean
0.0
0 20 40 60 80 100
Epoch
(d) SignFlipping
1.0 Cifarl0 MinMax
0.8

021 --- FedAvg —=— Median
: —— MKrum —— TACRC
—— Trimmedmean
0.0
0 20 40 60 80 100

Epoch

(f) Min-Max

Fig. 5. Attack and defense under CIFAR10, using non-IID partitioned datasets with « = 0.5.



M. Zhang et al.

1.0

0.8

0.6

ACC

0.4

0.2

0.0

CIFAR10 FedAvg

—— Average Accuracy
20 40 60 80 100
Epoch
(a) FedAvg
CIFAR10 Trimmedmean
—— Average Accuracy
20 40 60 80 100
Epoch

(¢) TrimmedMean

Journal of Information Security and Applications 94 (2025) 104210

CIFAR10 MKrum

1.0

0.8

0.6

ACC

0.4

0.2

0.0

—— Average Accuracy

1.0

0.8

0.6

ACC

0.4

0.2

20 40 60 80

Epoch

(b) MKrum

CIFAR10 Median

—— Average Accuracy|

100

20 40 60 80

Epoch

(d) Median

Fig. 6. Six kinds of attack impact on four defense method.

CIFAR10 TACRC

—— Average Accuracy

20

40

60 80 100

Epoch

Fig. 7. Six kinds of attack impact on TACRC-FL.

1.0

0.8

0.6

ACC

0.4

0.2

0.0

100

Percentage of Malicious Client Per Iteration

—— MinMax

—=— MinSum
—+— SignFlipping
—o— AdditiveNoise

12% 25% 37%

50% 62% 75%

Percentage

Fig. 8. The impact of different proportion of malicious client on our method under
six attacks.



M. Zhang et al.

NoAtt

x  malicious
e benign

aouBIaYIP JUBIPRID

(a) w/o Attack

AdditiveNoise

x  malicious
e benign

SORRK

$HddUIRYIP jualpeln
oo o o o~

o §

255 8.2
g 0. S —
08— o 0.2 0-‘;
,0- : e
%10 10 08 20D stanc
(/R N

(c) AdditiveNoise

SignFlipping
x  malicious
e benign
(9]
3 10 P Sl o
@‘ 08 ® .'NX £
™ 0.6 X
o b 4 .
= 04 ..
% 0.2 °
3 0.0
0.0
02 ™
Cog, 04
”7@ . 0.6
S”77/'/ 0.8
a,,ty

(e) SignFlipping

Fig. 9. Cluster feature on MNIST and CIFAR10, (a), (b), (c) show the results on MNIST, (d), (e), (f) show the result on CIFAR10.

in this figure legend, the reader is referred to the web version of this article.)

4.2. Experiment

All experiments were performed on a server running Ubuntu

22.04LTS, with 1 NVIDIA GeForce RTX 3090 Ti (with 24 GB memory)
and 64 GB RAM.

4.3. Experimental result

Performance Evaluation. We evaluate the performance of our pro-
posed TACRC-FL against six state-of-the-art model poisoning attacks
and compare it with other state-of-the-art defenses. Table 3 presents the
test accuracy using LeNet on non-IID partitioned MNIST and CIFAR-10
datasets with a Dirichlet coefficient of « = 0.5.

Fig. 4 illustrates the model performance under no attack with « =
0.5. The accuracy of our proposed method TACRC-FL is close to that of

Journal of Information Security and Applications 94 (2025) 104210

SignFlipping

x  malicious
e benign

[y
Q

oo 9o 9
N B

2oUaJaLIP JUBIPRID
o o

2l
&

(b) SignFlipping

NoAtt
x  malicious
e benign
(0]
=
9 1.0
o °
o 0.8
> 06 o
o L]
S 0.4 o
o o
3 02 . .‘:G.
§ 0.0
0.0
.2 K
Coe; 0.4 i
OSing 6 08 08 &
’77i/a,-,-t' 1.0 1.0 (@
14 $®
(d) w/o Attack
AdditiveNoise
x  malicious
e benign
(0]
9 1.0
o x
T 08 %
T 0.6
S o4
= 0.
© ®
5 0.2
o© P
§ 0.0
0.0
.2 K
Coe; 0.4 i
S} 0.6 +
Ne g 0.8 X’

im;_ 0.8 9
m”a’/'ty 1.0 1&2’ 0@

(f) AdditiveNoise

(For interpretation of the references to color

FedAvg without attack, indicating minimal performance degradation in
benign settings. Fig. 5 depicts the performance under six attack types
on CIFAR-10. It is evident that TACRC-FL significantly mitigates the
impact of strong model poisoning attacks. Among these, the Fang and
LIE attacks are the most detrimental, substantially degrading FedAvg
and bypassing other defenses. Although SignFlipping and AdditiveNoise
are relatively easier to detect, they still cause considerable damage
to FedAvg. Min-Max and Mix-Sum result in only slight reductions
in accuracy, but these impacts are also effectively alleviated by our
defense.

Table 3 summarizes the accuracy of seven aggregation methods
after 100 rounds of training under all attack types and the no-attack
setting. On MNIST, the model is easier to train, and attacks have
a relatively smaller effect. FedAvg achieves an average accuracy of
96.46%, with a maximum of 98.57% and a minimum of 93.09%, result-
ing in an accuracy drop of 5.48%. In contrast, TACRC-FL achieves a



M. Zhang et al.

CIFAR10 Fang

1.0

0.8

Q
Q
<
VA — a=0.3 a=0.8
—— a=0.4 —— a=0.9
0.2
—— a=0.5 a=1.0
— a=0.6
0'00 20 40 60 80 100
Epoch
(a) Fang
1.0 CIFAR10 MinMax
0.8
0.6
Q
Q .
< VAl
0.41 4] a=0.2
A a=0.3 a=0.8
i —— a=0.4 —— a=0.9
0.2
/ —— a=0.5 a=1.0
— a=0.6
0'00 20 40 60 80 100
Epoch
(¢) Min-Max
1.0 CIFAR10 SignFlipping
0.8

ACC

0.0

40 60
Epoch

80 100

(e) SignFlipping

Journal of Information Security and Applications 94 (2025) 104210

1.0 CIFAR10 LIE
0.8
E
a=0.2 — a=0.7
a=0.3 a=0.8
=04 —— a=0.9
a=0.5 a=1.0
—— a=0.6
0400 20 20 . =5 =0
Epoch
(b) LIE
1.0 CIFAR10 MinSum
0.8
0.6

A
1
Vi

ACC

W\

VY

L A R

AP \i
Vv

0.4 -—= 0a=0.2 — a=0.7
a=0.3 a=0.8
o] —— a=0.4 —— a=0.9
0.2
—— a=0.5 a=1.0
—— a=0.6
0‘00 20 40 60 80 100
Epoch
(d) Min-Sum
1.0 CIFAR10 AdditiveNoise
0.8

ACC

Epoch

(f) AdditiveNoise

Fig. 10. Accuracy evaluate of different « setting under six kinds of attacks on CIFAR10.

maximum accuracy of 98.50%, a minimum of 97.96%, and an average
drop of only 0.54%, showing that our method is approximately 10x
more effective in resisting attacks. Table 4 further compares the global
model accuracy under adversarially robust Byzantine attack scenarios
across seven aggregation algorithms. Without defense, the global model
converges to suboptimal accuracy. Compared to existing defenses, our
method achieves consistently competitive results.

For CIFAR-10, the average accuracy of FedAvg under six attacks
is 47.44%, with the worst being 44.59%. Our method achieves a
significantly higher average accuracy of 57.59%. The average attack
impact under TACRC-FL is 2.67% (60.26-57.59), while the best base-
line defense (TrimmedMean) suffers an average impact of 11.09%
(60.26-49.17). Therefore, TACRC-FL is approximately 4x more effec-
tive at mitigating poisoning attacks on this dataset.

TACRC-FL Stability Against Attacks. Fig. 6 illustrate the fluctuations
in the impact of six attacks on four aggregation methods. Compared

10

with Fig. 7, the global model obtained by the four aggregation methods
has relatively large fluctuations in the six kinds of attack, indicating
that it cannot better resist multiple attacks. On the contrary, the global
model evaluated by our aggregation method TACRC-FL has less fluc-
tuation, indicating that it has better defense effect against all six kinds
of attacks.

The Influence of Adversary Number. In our experiment, 32 clients
were randomly selected to participate in training in each round, and the
proportion of existing clients was e. Then the aggregate global model
is obtained by the aggregation algorithm .4. In this experiment, we set
epsilon to a different value 12.5%, 25%, 37.5%, 50%, 62.5% and 75%
respectively. Fig. 8 showed the evaluation result for different attacks
with different proportions of the number of malicious clients. Although



M. Zhang et al.

Table 5

Accuracy of our defense method under varying &, while keeping 6, = 0.05 and
53 = 0.2 fixed. The results indicate the defense is not overly sensitive to §,, confirming
its robustness.

) 5, 83 Adv. Sign. Add.

0.05 0.05 0.2 57.80 57.20 57.08

0.10 0.05 0.2 57.38 57.45 53.04

0.15 0.05 0.2 56.59 57.49 53.09

0.20 0.05 0.2 57.26 53.95 51.84

0.25 0.05 0.2 56.29 55.25 55.61
Table 6

Accuracy of our defense method under varying &, while keeping 5, = 0.05 and &; = 0.2
fixed. The defense maintains stable performance across a wide range of &, settings
against different attack types.

) 5, 83 Adv. Sign. Add.

0.05 0.05 0.2 57.20 57.08 57.80
0.05 0.10 0.2 55.98 57.27 57.44
0.05 0.20 0.2 53.81 53.81 58.68
0.05 0.30 0.2 56.37 56.39 56.20
0.05 0.40 0.2 57.69 57.54 55.35
0.05 0.50 0.2 57.13 57.19 51.71

the proportion of malicious clients had increased to 75%, our method
can still effectively defend and get a convergent global model.

Validity of Clustering Factors. To validate the effectiveness of the
proposed clustering factor in distinguishing between malicious and
benign models, we visualized the clustering factor in three-dimensional
space, as shown in Fig. 9. To validate the effectiveness of the pro-
posed clustering factor in distinguishing between malicious and benign
models, we visualized the clustering factor in three-dimensional space.
Due to the different local dataset and heterogeneous settings of the
client, the clustering factors of the model are scattered in the feature
space of the cluster. Fig. 9(a)-(f) shows the cluster factors of MNIST
and CIFAR10 under two kinds of attacks and without attack. Green
represents benign model updates and red represents malicious model
updates. In our clustering space, out clustering factor can obviously
separate benign and malicious. We think that the clustering factor
in this part is extensible. After taking advantage of other exception
assessments, this section can be populated to enhance TACRC-FL’s
ability to defend against many types of attacks.

The Influence of Data Non-IID. We evaluate our method on differ-
ent dirichlet coefficient «, a ranges from 0.2 to 1.0. Fig. 10(a)-(f)
correspond to the accuracy changes of six attacks under different «
Settings of CIFAR10. It shows that the reduction of a does not result
in a performance loss for our method, which indicates that our method
defends well against non-independent, identically distributed data.

Hyperparameter Analysis. We conduct a comprehensive analysis
of the hyperparameters §,, &,, and &5, as shown in Tables 5, 6, and
7. In each experiment, we fix two of the parameters and vary the
remaining one to evaluate the robustness of our defense method. The
results demonstrate that our approach maintains strong robustness
across a wide range of hyperparameter settings. Based on the overall
performance, we select §; = 0.05, 6, = 0.05, and §; = 0.2 as the default
configuration for the evaluation of our defense.

5. Conclusion

This paper presents a robust aggregation algorithm, TACRC-FL, for
federated learning (FL). It distinguishes benign model updates from ma-
licious ones by leveraging a set of trusted anchor clients. Specifically,
we design three clustering factors that effectively separate benign and
malicious client updates based on the anchor models. Leveraging these

11

Journal of Information Security and Applications 94 (2025) 104210

Table 7

Accuracy of our defense method under varying &, while keeping 6, = 0.05 and

6, = 0.05 fixed. The results demonstrate consistent robustness across different &;

values against adversarial, sign-flipping, and additive noise attacks.
8, 5, 53 Adv. Sign. Add.
0.05 0.05 0.1 58.07 52.32 57.78
0.05 0.05 0.2 57.20 57.08 57.80
0.05 0.05 0.3 55.65 57.18 56.04
0.05 0.05 0.4 56.19 55.72 57.69
0.05 0.05 0.5 56.64 57.02 56.89

anchors, the proposed method identifies and filters out malicious model
clusters to mitigate their adverse effects on global model aggregation.
Extensive experiments under various Byzantine threat scenarios demon-
strate that TACRC-FL achieves strong robustness without requiring
server-side clean data, and remains effective even in the presence
of a high proportion of malicious clients and severe non-IID data
distributions.

While this work focuses on untargeted Byzantine attacks, we ac-
knowledge that targeted threats—such as backdoor attacks—pose sig-
nificant and stealthy risks in FL. As part of future work, we plan to
extend TACRC-FL to detect and defend against such targeted poisoning
behaviors, further enhancing its applicability in real-world federated
systems.

CRediT authorship contribution statement

Maozhen Zhang: Project administration, Methodology, Investiga-
tion, Funding acquisition. Yi Li: Supervision, Software, Resources. Fei
Wei: Investigation, Formal analysis, Data curation. Bo Wang: Visual-
ization, Validation, Supervision, Funding acquisition. Yushu Zhang:
Visualization, Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (No. 62372452).

Data availability

Data will be made available on request.

References
[1] McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-

efficient learning of deep networks from decentralized data. In: Artificial

intelligence and statistics. PMLR; 2017, p. 1273-82.

Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K,

Charles Z, Cormode G, Cummings R, et al. Advances and open problems in

federated learning. Found Trends® Mach Learn 2021;14(1-2):1-210.

Gao D, Yao X, Yang Q. A survey on heterogeneous federated learning. 2022,

arXiv preprint arXiv:2210.04505.

Zhang C, Xie Y, Bai H, Yu B, Li W, Gao Y. A survey on federated learning.

Knowl-Based Syst 2021;216:106775.

Nguyen DC, Ding M, Pathirana PN, Seneviratne A, Li J, Poor HV. Federated

learning for internet of things: A comprehensive survey. IEEE Commun Surv

Tutor 2021;23(3):1622-58.

[2]

[3]

[4]

[5]


http://refhub.elsevier.com/S2214-2126(25)00247-9/sb1
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb1
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb1
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb1
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb1
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb2
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb2
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb2
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb2
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb2
http://arxiv.org/abs/2210.04505
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb4
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb4
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb4
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb5
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb5
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb5
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb5
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb5

M. Zhang et al.

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Beltran ETM, Pérez MQ, Sanchez PMS, Bernal SL, Bovet G, Pérez MG, Pérez GM,
Celdrdn AH. Decentralized federated learning: Fundamentals, state of the art,
frameworks, trends, and challenges. IEEE Commun Surv Tutor 2023.

Zhu J, Cao J, Saxena D, Jiang S, Ferradi H. Blockchain-empowered feder-
ated learning: Challenges, solutions, and future directions. ACM Comput Surv
2023;55(11):1-31.

Wu F, Guo S, Qu Z, He S, Liu Z, Gao J. Anchor sampling for federated
learning with partial client participation. In: International conference on machine
learning. PMLR; 2023, p. 37379-416.

Ding J, Tramel E, Sahu AK, Wu S, Avestimehr S, Zhang T. Federated learning
challenges and opportunities: An outlook. In: ICASSP 2022-2022 IEEE interna-
tional conference on acoustics, speech and signal processing. ICASSP, IEEE; 2022,
p. 8752-6.

Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: Concept and
applications. ACM Trans Intell Syst Technol (TIST) 2019;10(2):1-19.

Badr MM, Mahmoud M, Fang Y, Abdulaal M, Aljohani AJ, Alasmary W,
Ibrahem MI. Privacy-preserving and communication-efficient energy prediction
scheme based on federated learning for smart grids. IEEE Internet Things J 2023.
Cheng K, Fan T, Jin Y, Liu Y, Chen T, Papadopoulos D, Yang Q. Secureboost: A
lossless federated learning framework. IEEE Intell Syst 2021;36(6):87-98.

Lee CM, Delgado Fernandez J, Potenciano Menci S, Rieger A, Fridgen G.
Federated learning for credit risk assessment. In: Proceedings of the 56th hawaii
international conference on system sciences. 2023, p. 10.

Samarakoon S, Bennis M, Saad W, Debbah M. Federated learning for ultra-
reliable low-latency V2V communications. In: 2018 IEEE global communications
conference. GLOBECOM, IEEE; 2018, p. 1-7.

Xu C, Qu Y, Xiang Y, Gao L. Asynchronous federated learning on heterogeneous
devices: A survey. Comput Sci Rev 2023;50:100595.

Imteaj A, Mamun Ahmed K, Thakker U, Wang S, Li J, Amini MH. Federated
learning for resource-constrained IoT devices: panoramas and state of the art.
Fed Transf Learn 2022;7-27.

Kasyap H, Tripathy S. Beyond data poisoning in federated learning. Expert Syst
Appl 2024;235:121192.

Tan S, Hao F, Gu T, Li L, Liu M. Collusive model poisoning attack in
decentralized federated learning. IEEE Trans Ind Inform 2023.

Wang S, Li Q, Cui Z, Hou J, Huang C. Bandit-based data poisoning attack
against federated learning for autonomous driving models. Expert Syst Appl
2023;227:120295.

Cao X, Jia J, Zhang Z, Gong NZ. Fedrecover: Recovering from poisoning attacks
in federated learning using historical information. In: 2023 IEEE symposium on
security and privacy. SP, IEEE; 2023, p. 1366-83.

Chen X, Yu H, Jia X, Yu X. Apfed: Anti-poisoning attacks in privacy-preserving
heterogeneous federated learning. IEEE Trans Inf Forensics Secur 2023.
Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated
learning. In: International conference on artificial intelligence and statistics.
PMLR; 2020, p. 2938-48.

Xie C, Koyejo O, Gupta I. Fall of empires: Breaking byzantine-tolerant sgd
by inner product manipulation. In: Uncertainty in artificial intelligence. PMLR;
2020, p. 261-70.

Fang M, Cao X, Jia J, Gong N. Local model poisoning attacks to {Byzantine-
Robust} federated learning. In: 29th USeNIX security symposium. USeNIX
security 20, 2020, p. 1605-22.

So J, Giiler B, Avestimehr AS. Byzantine-resilient secure federated learning. IEEE
J Sel Areas Commun 2020;39(7):2168-81.

Shejwalkar V, Houmansadr A. Manipulating the byzantine: Optimizing model
poisoning attacks and defenses for federated learning. In: NDSS. 2021.

12

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Journal of Information Security and Applications 94 (2025) 104210

Zhu B, Wang L, Pang Q, Wang S, Jiao J, Song D, Jordan MI. Byzantine-robust
federated learning with optimal statistical rates. In: International conference on
artificial intelligence and statistics. PMLR; 2023, p. 3151-78.

Jebreel NM, Domingo-Ferrer J. FL-Defender: Combating targeted attacks in
federated learning. Knowl-Based Syst 2023;260:110178.

Han S, Park S, Wu F, Kim S, Zhu B, Xie X, Cha M. Towards attack-tolerant fed-
erated learning via critical parameter analysis. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2023, p. 4999-5008.

Blanchard P, El Mhamdi EM, Guerraoui R, Stainer J. Machine learning with
adversaries: Byzantine tolerant gradient descent. Adv Neural Inf Process Syst
2017;30.

Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: To-
wards optimal statistical rates. In: International conference on machine learning.
PMLR; 2018, p. 5650-9.

Tao Z, Yang K, Kulkarni SR. Byzantine-robust clustered federated learning. 2023,
arXiv preprint arXiv:2306.00638.

Sattler F, Miiller K-R, Wiegand T, Samek W. On the byzantine robustness of
clustered federated learning. In: ICASSP 2020-2020 IEEE international conference
on acous tics, speech and signal processing. ICASSP, IEEE; 2020, p. 8861-5.
Cao X, Fang M, Liu J, Gong NZ. Fltrust: Byzantine-robust federated learning via
trust bootstrapping. 2020, arXiv preprint arXiv:2012.13995.

Ester M, Kriegel H-P, Sander J, Xu X, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd. Vol. 96, 1996,
p. 226-31.

Campello RJ, Moulavi D, Sander J. Density-based clustering based on hierarchical
density estimates. In: Pacific-Asia conference on knowledge discovery and data
mining. Springer; 2013, p. 160-72.

He Z, Wang L, Cai Z. Clustered federated learning with adaptive local differential
privacy on heterogeneous iot data. IEEE Internet Things J 2023.

Mehta M, Shao C. A greedy agglomerative framework for clustered federated
learning. IEEE Trans Ind Inform 2023.

Ghosh A, Chung J, Yin D, Ramchandran K. An efficient framework for clustered
federated learning. Adv Neural Inf Process Syst 2020;33:19586-97.

Li S, Cheng Y, Wang W, Liu Y, Chen T. Learning to detect malicious clients for
robust federated learning. 2020, arXiv preprint arXiv:2002.00211.

Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D,
Segal A, Seth K. Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security. 2017, p. 1175-91.

Baruch G, Baruch M, Goldberg Y. A little is enough: Circumventing defenses for
distributed learning. Adv Neural Inf Process Syst 2019;32.

Li L, Xu W, Chen T, Giannakis GB, Ling Q. RSA: Byzantine-robust stochastic
aggregation methods for distributed learning from heterogeneous datasets. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 33, 2019, p.
1544-51.

Wu Z, Ling Q, Chen T, Giannakis GB. Federated variance-reduced stochastic
gradient descent with robustness to byzantine attacks. IEEE Trans Signal Process
2020;68:4583-96.

Sun Z, Kairouz P, Suresh AT, McMahan HB. Can you really backdoor federated
learning?. 2019, arXiv preprint arXiv:1911.07963.

Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning
through an adversarial lens. In: International conference on machine learning.
PMLR; 2019, p. 634-43.

Pillutla K, Kakade SM, Harchaoui Z. Robust aggregation for federated learning.
IEEE Trans Signal Process 2022;70:1142-54.

Ozdayi MS, Kantarcioglu M, Gel YR. Defending against backdoors in federated
learning with robust learning rate. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 35, 2021, p. 9268-76.


http://refhub.elsevier.com/S2214-2126(25)00247-9/sb6
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb6
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb6
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb6
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb6
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb7
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb7
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb7
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb7
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb7
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb8
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb8
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb8
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb8
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb8
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb9
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb10
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb10
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb10
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb11
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb11
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb11
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb11
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb11
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb12
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb12
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb12
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb13
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb13
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb13
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb13
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb13
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb14
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb14
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb14
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb14
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb14
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb15
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb15
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb15
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb16
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb16
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb16
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb16
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb16
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb17
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb17
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb17
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb18
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb18
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb18
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb19
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb19
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb19
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb19
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb19
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb20
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb20
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb20
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb20
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb20
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb21
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb21
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb21
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb22
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb22
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb22
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb22
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb22
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb23
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb23
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb23
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb23
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb23
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb24
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb24
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb24
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb24
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb24
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb25
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb25
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb25
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb26
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb26
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb26
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb27
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb27
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb27
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb27
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb27
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb28
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb28
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb28
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb29
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb29
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb29
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb29
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb29
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb30
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb30
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb30
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb30
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb30
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb31
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb31
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb31
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb31
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb31
http://arxiv.org/abs/2306.00638
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb33
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb33
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb33
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb33
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb33
http://arxiv.org/abs/2012.13995
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb35
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb35
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb35
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb35
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb35
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb36
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb36
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb36
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb36
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb36
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb37
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb37
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb37
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb38
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb38
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb38
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb39
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb39
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb39
http://arxiv.org/abs/2002.00211
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb41
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb42
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb42
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb42
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb43
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb44
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb44
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb44
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb44
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb44
http://arxiv.org/abs/1911.07963
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb46
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb46
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb46
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb46
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb46
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb47
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb47
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb47
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb48
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb48
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb48
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb48
http://refhub.elsevier.com/S2214-2126(25)00247-9/sb48

	Robust clustering federated learning with trusted anchor clients
	Introduction
	Background
	Federated Learning
	HDBSCAN
	Byzantine-Attack
	Byzantine-Robust FL Methods

	Framework of TACRC-FL
	Threat Model
	Overview
	Tamper-Proof Verification
	Clustering Factor Extraction and Clustering
	Benign model updates detection

	Performance Evaluation
	Experimental Setup
	Experiment
	Experimental Result

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


