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 A B S T R A C T

Federated Learning (FL) is a distributed machine learning framework that has attracted widespread attention. 
However, its decentralized architecture makes it vulnerable to attack with malicious data or model injection. 
While existing methods are can defend against a limited number of malicious clients, the challenge of defending 
against model poisoning attacks from a large number of malicious clients remains an unresolved issue. To 
address these challenges. We propose the Robust Clustering Federated Learning with Trusted Anchor Clients, 
which aims to provide clean global models for specified trusted client’s enterprise (trusted client as anchor 
client), even in the presence of a substantial number of malicious clients. Specifically, it performs classification 
by extracting clustering factors from the differences between anchor clients and other clients. It then identifies 
trustworthy clusters as aggregation clusters to identify the most likely benign clients. Extensive experiments 
on two datasets demonstrate that our method maintains robust defense efficacy, even in scenarios involving 
numerous malicious clients (more than 50%) or highly non-independent, non-identically distributed data.
. Introduction

Federated Learning (FL) is a decentralized machine learning
aradigm in which multiple devices or servers collaboratively train a 
lobal model while retaining their raw data locally [1–8]. By design, FL 
nhances data privacy and mitigates the need for centralized data col-
ection. Specifically, in each training round, clients receive the current 
lobal model, perform local updates using their private data, and send 
he resulting model updates to the server. The server then aggregates 
hese updates to obtain an improved global model. This updated global 
odel is then broadcast back to the clients for the next training 
ound [9,10]. Among the three canonical types of federated learning 
FL)—horizontal, vertical, and federated transfer learning—this work 
ocuses exclusively on horizontal FL. In horizontal FL, all participating 
lients share the same feature space (i.e., data have the same attributes) 
ut possess different data samples. This setting has been widely adopted 
n real-world applications such as next-word prediction [1,11], credit 
coring [12,13], and IoT device collaboration [14,15], and remains the 
ominant scenario in contemporary FL research and practice. 
In FL, each client trains a model on its own local dataset and 

articipates in collaborative training by uploading model updates to the 
erver. However, due to its distributed nature, FL is vulnerable to model 
oisoning attacks [16–22], where malicious clients submit crafted up-
ates to compromise the global model. Based on the attacker’s goal, 
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poisoning attacks are typically categorized as targeted or untargeted. 
In targeted attacks, the adversary attempts to manipulate the model’s 
behavior on specific inputs or labels—for example, by forcing the model 
to misclassify particular instances (e.g., backdoor attacks). In contrast, 
untargeted poisoning attacks aim to degrade the overall performance of 
the global model without focusing on specific targets, often by injecting 
noise or inconsistent gradients to induce convergence failure or accu-
racy drop. Such untargeted attacks are especially damaging, as they can 
silently and broadly destabilize the training process. In this work, we 
focus on detecting and mitigating untargeted poisoning attacks, which 
remain a significant and underexplored threat in federated settings.

Untargeted poisoning attacks aim to hinder model convergence or 
drive training toward a sub-optimal solution [23–29]. These attacks 
can be realized through either data poisoning (e.g., manipulating local 
datasets) or model poisoning (i.e., submitting crafted malicious updates 
to the central server). Unlike targeted attacks that aim to manipulate 
predictions on specific inputs, untargeted attacks broadly degrade the 
overall performance of the global model, often in subtle ways that 
make detection more challenging. To mitigate poisoning threats, a 
variety of server-side robust aggregation strategies have been proposed, 
particularly for targeted attacks. These methods seek to approximate 
the true global update by applying statistical techniques such as the 
ttps://doi.org/10.1016/j.jisa.2025.104210

vailable online 23 August 2025 
214-2126/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
https://orcid.org/0000-0002-4750-0841
https://orcid.org/0000-0002-8943-0335
mailto:maozhenzhang@mail.dlut.edu.cn
mailto:liyi@dlut.edu.cn
mailto:feiwei@alibaba-inc.com
mailto:bowang@dlut.edu.cn
mailto:zhangyushu@jxufe.edu.cn
https://doi.org/10.1016/j.jisa.2025.104210
https://doi.org/10.1016/j.jisa.2025.104210
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2025.104210&domain=pdf


M. Zhang et al. Journal of Information Security and Applications 94 (2025) 104210 
coordinate-wise median or trimmed mean [30–33]. However, exist-
ing approaches predominantly rely on server-side filtering and do 
not incorporate client-side information or collaboration. Consequently, 
they suffer from two major limitations: (1) their robustness degrades 
significantly as the proportion of malicious clients increases, and (2) 
they exhibit poor performance under non-IID data distributions, where 
natural variations among benign client updates can resemble adver-
sarial behavior. Designing effective defenses in federated learning thus 
remains a critical challenge, particularly under realistic assumptions of 
data heterogeneity and partial trust. 

To address these challenges, we propose TACRC-FL (Trusted An-
chor Client-guided Robust Clustering for Federated Learning), a novel 
cluster-based defense against model poisoning attacks. TACRC-FL lever-
ages gradient-space representations of client updates to partition par-
ticipants into distinct clusters, guided by trusted anchor clients that 
help distinguish between benign and malicious updates. Specifically, 
TACRC-FL introduces a novel gradient norm vector computation
method, guided by the parameters of one or more trusted anchor 
clients. These anchor clients upload authenticated model updates
through a tamper-proof verification mechanism, preventing hijacking 
or tampering. By using the anchor-provided reference, client updates 
are projected into a feature space, enabling classification into clusters. 
Each cluster is then assigned a trust score, and global aggregation is 
conducted with respect to these trust scores. A closely related method is 
FLTrust [34], which requires the server to hold an auxiliary dataset for 
maintaining a clean reference model. However, this assumption violates 
the standard FL paradigm, which prohibits direct access to raw data on 
the server side. In contrast, TACRC-FL requires no server-side dataset 
and remains effective under non-IID data distributions and high ratios 
of malicious participants.  We consider a realistic deployment in which 
several state-owned (official) banks act as the initiating organizers 
of a federated-learning consortium together with smaller regional or 
privately-owned banks. The state-owned banks tightly audit and control 
the devices under their administration, so the clients belonging to them 
can serve as trusted anchor clients. In contrast, clients operated by 
smaller private banks undergo less stringent vetting and may include 
malicious participants. By letting the anchor clients from the state-
owned banks guide the verification and aggregation processes, the 
consortium can effectively mitigate poisoning attempts originating 
from untrusted organizations while still benefiting from their data 
contributions, ultimately yielding a more robust global model. 

In summary, we make the following contributions:

• We propose a Tamper-proof Verification mechanism that 
applies cryptographic key agreement to protect client model pa-
rameters in FL.

• We introduce a federated gradient norm vector computation 
method, guided by Anchor client model parameters. Based 
on this, we construct client clusters by measuring gradient feature 
discrepancies between anchor clients and other participants.

• We leverage trusted clients to identify and aggregate benign 
clusters, yielding a coarser yet robust global model while reducing 
communication overhead.

• We conduct extensive experiments on two benchmark datasets to 
evaluate the performance and robustness of TACRC-FL against 
several state-of-the-art model poisoning attacks. Our results show 
that TACRC-FL achieves up to a 10× improvement in defense 
effectiveness compared to existing approaches.

2. Background

2.1. Federated learning

In this work, we consider a typical FL setting as used in [1], which 
involves a central server 𝑠 and 𝑁 clients. Each client 𝑖 ∈ [ ] holds a 
local dataset  . The size of the dataset is denoted as | | = 𝑛 . Each 
𝑖 𝑖 𝑖

2 
local dataset may observe a different distribution, i.e., the local datasets 
are non-IID. The objective of FL is to coordinate the clients (with their 
local data) to train a global model 𝒘. At each training iteration 𝑡, we 
use 𝑤𝑡 to represent the global model and 𝑤𝑖

𝑡 to represent the local 
model updated by participant 𝑖. The server updates the global model 
by aggregating the local model updated with learning rate 𝜂.

Specifically, at the t-iteration, the FL system repeats the follow three 
steps to obtain the global model 𝑤𝑡 from the current 𝑤𝑡−1.

Step I. The server sends the global model 𝑤𝑡−1 from the previous 
round to the server.

Step II. Each client performs its local learning process with its local 
training data and the received global model 𝑤𝑡−1. During the local 
learning process, each client uses its own private data for random 
gradient descent:
𝑤𝑖

𝑡 = 𝑤𝑖
𝑡−1 + 𝜂𝑖 ⋅ ∇𝐿𝑖(𝑤𝑡−1;𝑖)

where 𝜂𝑖 is the learning rate of local model training and ∇𝐿𝑖(𝑤𝑡−1;𝑖)
denotes the gradient of local optimization loss. When the local training 
is complete, the client sends the latest local model 𝑤𝑖

𝑡 back to the server

𝑤𝑡 = 𝑤𝑡−1 + 𝜂 ⋅

∑

𝑖=1
(𝑤𝑖

𝑡 −𝑤𝑡−1),  for 𝑡 = 1,… , 𝑇 .

Where 𝜂 is the learning rate of global model, it is usually calculated 
based on the number of local clients | | and the number of samples 
|𝑖|.

Step III. The server use aggregator  to aggregates local model 
updates obtain the updated global 𝑤𝑡.

2.2. HDBSCAN

The density-based spatial clustering of noise applications (DBSCAN) 
[35] is a clustering algorithm that uses a predefined maximum distance 
to determine whether two points belong to the same group. Extending 
DBSCAN, the Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise (HDBSCAN) [36] determines a different maximum 
distance for each clustering group according to the density of different 
points. HDBSCAN avoids setting the maximum distance and the number 
of clusters in advance and can cluster adaptively in the iteration.

2.3. Byzantine-attack

The vulnerability of FL gives malicious clients ample opportunity 
to disrupt training. Attackers can poison local updates either by in-
jecting new adversarial clients or by compromising originally benign 
ones. Most robust aggregation defenses—such as Krum, Trimmed Mean, 
and Median—assume that fewer than 50% of participants are ma-
licious [30,31], yet scenarios in which adversaries form a majority 
remain largely unexplored. Recent adaptive attacks further exploit this 
gap: by tuning the magnitude and direction of poisoned gradients to 
mimic the benign majority, they can evade existing filters and still im-
pair convergence [26]. Empirical studies confirm that seemingly simple 
strategies—such as adding bounded random noise [23] or inverting 
the signs of selected client updates [24]—can significantly degrade 
the performance of aggregation algorithms including FedAvg, Krum, 
Trimmed Mean, and Median. Consequently, even with current defenses 
in place, untargeted poisoning continues to pose a serious threat to 
model integrity and accuracy in federated learning. 

2.4. Byzantine-robust FL methods

The model updates in Byzantine-robust FL are typically high-dim-
ensional vectors, and identifying benign updates involves analyzing the 
relationships among these vectors. However, the excessive dimension-
ality of model updates incurs significant computational overhead. As 
previously mentioned, Krum [30] requires computing the Euclidean 
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Algorithm 1 TACRC-FL
1: Input: cluster 𝑗 , client model 𝑤𝑖, anchor model 𝑤𝑗

2: Parameter: number of iterations 𝑇
3: Output: final global model 𝑤∗

4: for 𝑡 = 1 to 𝑇  do
5:  Verify if anchor model 𝑤𝑗 is tampered using Algorithm 2

⊳ Tamper-proof check
6:  if verification passed then
7:  1,… ,𝑙 ← Cluster(𝑤𝑖, 𝑤𝑗) ⊳ Use Algorithm 3
8:  agg ← DetectClusters({1, ...,𝑙}) ⊳ Use Algorithm 4
9:  𝑤∗ ← FedAvg({𝑤𝑖 ∣ 𝑖 ∈ agg}) ⊳ Aggregate selected client 
updates
return 𝑤∗

distances between each client and all others, selecting the one with 
the smallest sum of distances to the 𝑁−𝑓−2 nearest neighbors, where 
𝑓 is the number of malicious clients. Trimmed Mean [31] requires 
sorting values at each coordinate and removing extreme values, while
Median [31] takes the coordinate-wise median across clients.

Detecting abnormal (i.e., potentially attacked) model updates can 
be formulated as a classification task. A natural approach is to adopt 
clustering-based classification [32,33,37,38]. Sattler et al. [33] ex-
plored the use of clustered FL under Byzantine threats by partitioning 
client updates based on cosine similarity. However, this method is 
only effective when the number of malicious clients is small. Tao 
et al. [32] proposed a robust aggregation algorithm based on IFCA 
(Iterative Federated Clustering Algorithm) [39], which incorporates 
coordinate-wise Median and Trimmed Mean into IFCA to enhance 
robustness. Nevertheless, the high dimensionality 𝑑 still introduces 
significant learning challenges. Our proposed aggregation factor ad-
dresses this issue by reducing the dimensional burden encountered 
during clustering. However, both of the above methods still require full 
pairwise computation over all client updates. Moreover, they remain 
effective only when the proportion of malicious clients is relatively 
small; their performance degrades significantly when this proportion 
increases.

Some defenses have been proposed to handle large-scale malicious 
participation. For instance, EVA Detection [40] trains an autoen-
coder using an auxiliary dataset and detects potential attacks by com-
paring discrepancies between generated and real data. FLTrust [34] 
relies on a server-side trusted dataset for validating updates. However, 
these approaches typically depend on external datasets obtained out-
side the federation, which violates the core principle of FL—namely, 
that the server should not have access to raw client data.

3. Framework of TACRC-FL

3.1. Threat model

We follow a FL setup where a central server coordinates multiple 
distributed clients. Among the clients, an arbitrary number may be 
compromised and controlled by the adversary. The adversary’s capa-
bilities include full control over its own local data and model updates. 
However, the adversary has no access to the data or model parameters 
of benign clients. The adversary aims to influence the aggregation of the 
global model by manipulating its locally trained models. Specifically, 
the attacker’s objective is to degrade the overall accuracy of the global 
model or steer its convergence toward a sub-optimal point. 
3 
Algorithm 2 Tamper-Proof Verification
1: Input: client 𝑢, masked model [𝑤𝑙𝑜𝑐𝑎𝑙

𝑢 ], location index 𝐼𝑖𝑛𝑑𝑒𝑥, mask 
function 𝐻(⋅) ⊳ Input parameters

2: Output: Boolean value (True / False) ⊳ Verification result
3: 𝑚𝑎𝑠𝑘𝑢 ← 𝐻(𝑆𝑠𝑘) ⊳ Generate mask using secret key
4: 𝑤𝑙𝑜𝑐𝑎𝑙

𝑢 ← [𝑤𝑙𝑜𝑐𝑎𝑙
𝑢 ] − 𝑚𝑎𝑠𝑘𝑢 ⊳ Recover the original local model

5: (𝑆𝑝𝑘, 𝑆𝑠𝑘) ← KA.gen(𝑤𝑙𝑜𝑐𝑎𝑙
𝑢 , 𝐼𝑖𝑛𝑑𝑒𝑥) ⊳ Generate key pair

6: 𝑆̃𝑢,𝑠 ← KA.agg(𝑆𝑝𝑘, 𝑆𝑠𝑘) ⊳ Compute the agreement shared key
7: if 𝑆̃𝑢,𝑠 = 𝑆𝑢,𝑠 then ⊳ Check authentication match
8:  return True ⊳ Verification passed
9: else
10:  return False ⊳ Verification failed

3.2. Overview

As depicted in Algorithm 1, the workflow of TACRC-FL consists of 
the following steps: (1) Perform tamper-proof verification to determine 
whether the anchor model has been modified. (2) Extract clustering 
factors and perform clustering based on the differences between trusted 
anchor model updates and other client updates. (3) After clustering, 
aggregate the client updates within each cluster. Anchor clients are 
then used to evaluate the aggregated cluster models and assign trust 
scores. (4) In each iteration, select the cluster with the highest trust 
score, and use predefined thresholds 𝛿1 and 𝛿2 to determine additional 
trustworthy clusters. Clusters whose trust scores fall outside these 
threshold ranges are considered potentially malicious and are excluded 
from the aggregation list. An overview of TACRC-FL is shown in Fig. 
1, and the full procedure is summarized as pseudo-code in Algorithm 1.

3.3. Tamper-proof verification

We employ the key agreement method [41] to implement a tamper-
proof verification as depicted in Algorithm 2. In Fig.  2, we present the 
flowchart illustrating the process of key agreement and model masking 
in the proposed algorithm. Here, 𝑢 ∈ 𝑁 is the client, 𝑠 is the server. 
𝑆 represents a secret key, ℎ and 𝑔 are parameters in key exchange 
protocol, ℎ is a randomly selected large prime number, and 𝑔 is an 
integer selected as a generator in a finite field.
Key Agreement. The trusted anchor client 𝑢 engages in key agreement 
with the server 𝑠 to obtain the shared key 𝑆𝑢,𝑠. Firstly, the trusted client 
and the server generate their respective private keys, denoted as 𝑆𝑠𝑘

𝑢
and 𝑆𝑠𝑘

𝑠 , respectively. Unlike the server, the trusted client randomly 
selects the parameter location of the model. Clinet generate ℎ using the 
values of these model parameters. Then, it calculates the private key 
𝑆𝑠𝑘
𝑢  using the function KA.gen and records the index of the parameter 
location used as 𝐼𝑖𝑛𝑑𝑒𝑥. Subsequently, the trusted client and the server 
compute their respective public keys 𝑆𝑝𝑘

𝑢  and 𝑆𝑝𝑘
𝑠  from their private 

keys and then exchange them. Upon receiving the other party’s public 
key, each party calculates the agreement shared key 𝑆𝑢,𝑠.

Mask Model and Model Tampering Verification. The trusted client 
applies a random mask to the model using the shared key 𝑆𝑢,𝑠, as 
illustrated in (1) and (2). The mask is generated from the shared key 
𝑆𝑢,𝑠 and added to the model parameters to obtain the masked model. 

𝑚𝑎𝑠𝑘𝑢 = 𝐻(𝑤𝑙𝑜𝑐𝑎𝑙
𝑢 , 𝑆𝑢,𝑠), (1)

[𝑤𝑙𝑜𝑐𝑎𝑙
𝑢 ] = 𝑤𝑙𝑜𝑐𝑎𝑙

𝑢 + 𝑚𝑎𝑠𝑘𝑢, (2)

here, 𝐻(⋅) is the mask generation function. After applying the mask, 
the trusted client sends the masked model [𝑤𝑙𝑜𝑐𝑎𝑙

𝑢 ], mask generation 
function 𝐻(⋅), private key calculation function KA.gen, and parameter 
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Fig. 1. Overview of TACRL-FL.
Fig. 2. Key agreement and model masking.
index 𝐼𝑖𝑛𝑑𝑒𝑥 to the server. The server calculates the mask by using the 
shared key 𝑆𝑢,𝑠 and removes the mask from the model to obtain 𝑤𝑙𝑜𝑐𝑎𝑙

𝑢 . 
It then employs the key calculation function KA.gen and the parameter 
index 𝐼𝑖𝑛𝑑𝑒𝑥 to compute the agreement shared key 𝑆̃𝑢,𝑠 between the 
trusted client and the server. To verify that the trusted client has not 
been tampered with, the consistency between 𝑆̃𝑢,𝑠 and 𝑆𝑢,𝑠 is checked. 
In addition, the mask of the model prevents malicious clients from 
accessing the trusted model so that malicious clients do not know 
the real update direction of the clean model to design more complex 
attacks. The server checks whether 𝑆̃𝑢,𝑠 and 𝑆𝑢,𝑠 are the same. The same 
calculated key means the model parameters have not been tampered 
with.

3.4. Clustering factor extraction and clustering

In FL, it is widely acknowledged that the distribution of model 
parameters reflects the variation in model training. The distinction 
between malicious and benign models lies in malicious participants 
injecting harmful information into the model, disrupting the model’s 
convergence, or injecting backdoor tasks. Malicious attacks aim to 
4 
make the global model deviate from the optimal model 𝑤∗, forcing the 
global model to converge toward a secondary solution or diverge. These 
attacks result in model updates that deviate more from the normal 
model or exhibit larger update gradients, as depicted in Fig.  3(a).

Based on the considerations above, we use a trusted cluster model 
as an anchor to indicate the correct direction. The specific process of 
clustering factor extraction is shown in Algorithm 3. As presented in the 
algorithm, we calculate the angle between the trusted model direction 
and other unknown attribute models to avoid deviating from the correct 
direction during model updates and optimization: 

𝑞𝑖 =
⟨𝑔̃, 𝑔𝑖⟩
‖𝑔̃‖‖𝑔𝑖‖

, (3)

here, 𝑔̃ denotes the aggregated gradient of the anchor cluster, and 
𝑔𝑖 is the update from client 𝑖. We further include a locality measure 
𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(𝑔𝑖, 𝑘), defined as the average 𝓁2-distance to the 𝑘 nearest up-
dates, to capture neighborhood structure. Because benign clients share 
the same optimization goal as the anchor, their updates are mutually 
similar, whereas malicious updates deviate significantly. By combining 
𝑞𝑖 and the 𝑘-NN distance, our clustering step groups updates with 
similar orientations and magnitudes, as depicted in Fig.  3(b). Clusters 
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Algorithm 3 Clustering Factor Extraction and Clustering
1: Input: local models {𝑤𝑖

𝑡}
𝑁𝑢
𝑖=1, anchor models {𝑤

𝑗
𝑡 }

𝑁𝑎
𝑗=1, previous 

global model 𝑤𝑡−1 ⊳ Models at iteration 𝑡
2: Parameter: 𝑘 (nearest neighbors) ⊳ Used for 𝑘-NN distance
3: Output: clusters  = {1,… ,𝑙}

4: 𝑤̃𝑡 ← 𝑤𝑡−1 +
1
𝑁𝑎

𝑁𝑎
∑

𝑗=1
𝑤 𝑗

𝑡−1 ⊳ Anchor-guided pseudo model

5: 𝑔̃ ← ‖ 𝑤̃𝑡 −𝑤𝑡−1 ‖2 ⊳ Anchor gradient norm
6: for 𝑖 ← 1 to 𝑁𝑢 do ⊳ Process every non-anchor client
7:  𝑔𝑖 ← ‖𝑤 𝑖

𝑡 −𝑤𝑡−1 ‖2 ⊳ Client 𝑖 gradient norm
8:  𝛥𝑔𝑖 ← ‖ 𝑔̃ − 𝑔𝑖 ‖2 ⊳ Distance to anchor gradient
9:  𝑞𝑖 ←

⟨𝑔̃, 𝑔𝑖⟩
‖𝑔̃‖ ‖𝑔𝑖‖

⊳ Cosine similarity with anchor
10:  𝑑𝑘𝑖 ← Neighbor(𝑔𝑖, 𝑘) ⊳ 𝑘-NN distance in gradient space
11:  𝑋𝑖 ← {𝛥𝑔𝑖, 𝑞𝑖, 𝑑𝑘𝑖 } ⊳ Feature vector for clustering
12: 1,… ,𝑙 ← HDBSCAN({𝑋𝑖}

𝑁𝑢
𝑖=1) ⊳ Density-based clustering

13: return 1,… ,𝑙 ⊳ Return final clusters

Fig. 3. Anchor client and neighbor distance.

that closely align with the anchor direction are deemed benign; those 
that do not are flagged as potentially malicious for further scrutiny. 

𝑑𝑖,𝑗 =
√

(𝑔𝑖 − 𝑔𝑗 )2,

𝑑𝑘𝑖 = min
𝑘
∑

𝑗=1,𝑗≠𝑖
𝑑𝑖,𝑗 ,

(4)

where 𝑑𝑖,𝑗 is the distance between the model updates gradient 𝑔𝑖 and 
other model updates gradient 𝑔𝑗 , 𝑑𝑘𝑖  is the 𝑘 nearest distance of the 
model updates gradient 𝑔𝑖. Additionally, to prevent adversarial attacks 
that carefully manipulate the distances between models, we employ 
the update gradient difference between the anchor model and each 
unknown model as a clustering factor. This approach is intended to 
enhance the system’s robustness against potential attacks. The model 
update gradient is calculated by (5). 
𝑔𝑖 = ‖𝑤𝑖

𝑡 −𝑤𝑡−1‖2, (5)

𝛥𝑔𝑖 = ‖𝑔̃ − 𝑔𝑖‖2,

5 
here, 𝑔̃ is the anchor model update gradient. To avoid the need for 
adjusting the neighborhood radius of DBSCAN in each training round, 
we adopt HDBSCAN to form clusters, eliminating the requirement for 
setting the density threshold 𝜖 in DBSCAN.

3.5. Benign model updates detection

We use clustering factors to partition models with unknown trust-
worthiness into multiple clusters. The model updates within each clus-
ter are aggregated to form a cluster model, which is then sent to the 
anchor client for evaluation. The trust score 𝑠 is assessed using the 
anchor client’s local training set: 
𝑠𝑗𝑎 ← 𝙰𝚗𝚌𝚑𝚘𝚛_𝙲𝚕𝚒𝚎𝚗𝚝_𝙴𝚟𝚊𝚕𝚞𝚊𝚝𝚎(𝑤𝑗

𝑡 ), (6)

where 𝙰𝚗𝚌𝚑𝚘𝚛_𝙲𝚕𝚒𝚎𝚗𝚝_𝙴𝚟𝚊𝚕𝚞𝚊𝚝𝚎(⋅) denotes the evaluation of the cluster 
model 𝑤𝑗

𝑡  on the anchor client’s private dataset. The resulting trust 
scores from all anchor clients are then uploaded to the server and 
averaged. Simultaneously, we compute the cosine similarity between 
each cluster model’s update and the anchor model’s update.

Based on the averaged trust scores and cosine similarities, we apply 
threshold values 𝛿1, 𝛿2, and 𝛿3 to filter out suspicious clusters. Clusters 
that meet the filtering criteria are added to the aggregation list. The 
objective is to identify and exclude potentially malicious updates from 
being aggregated, ensuring that the final global model is primarily 
influenced by benign participants.

The full detection process of benign cluster model updates is de-
scribed in Algorithm 4. Specifically, TACRC-FL leverages anchor
clients to assess and select clusters with high confidence in their 
integrity. This process serves as a robust pre-selection step for FedAvg, 
ensuring that aggregation in each round only includes the most reliable 
clusters.
Algorithm 4 Benign Model Updates Detection
1: Input: Clusters {1,… ,𝑙} of client updates
2: Parameter: anchor clients 𝐴 = {1,… , 𝑁𝑎}; thresholds 𝛿1, 𝛿2, 𝛿3
3: Output: Aggregation candidate list agg
4: for each cluster 𝑗 , 𝑗 = 1 to 𝑙 do
5:  𝑤𝑗

𝑡 ← 𝑤𝑡−1 + 𝜂
∑

𝑖∈𝑗 (𝑤
𝑖
𝑡 −𝑤𝑡−1) ⊳ Compute pseudo aggregated 

model for cluster
6: Store all cluster models: 𝑤𝑗

𝑡 ← {𝑤1
𝑡 ,… , 𝑤𝑙

𝑡}
7: for each cluster 𝑗 , 𝑗 = 1 to 𝑙 do
8:  for each anchor client 𝑎 = 1 to 𝑁𝑎 do
9:  𝑠𝑗𝑎 ← AnchorClientEvaluate(𝑤𝑗

𝑡 ) ⊳ Evaluate model by anchor 
client

10:  𝑠𝑗 ← 1
𝑁𝑎

∑

𝑎∈𝐴 𝑠𝑗𝑎 ⊳ Mean anchor score for cluster
11:  cos 𝜃

𝑗
← 1

|𝑗 |
∑

𝑖∈𝑗 cos 𝜃
𝑗
𝑖 ⊳ Mean cosine similarity

12: 𝑠̃ ← max{𝑠1,… , 𝑠𝑙} ⊳ Max anchor score across clusters
13: cos 𝜃 ← max{cos 𝜃

𝑗
} ⊳ Max mean cosine similarity

14: for each cluster 𝑗 , 𝑗 = 1 to 𝑙 do
15:  if cos 𝜃𝑗 = cos 𝜃 then
16:  Add 𝑗 to agg ⊳ Best-aligned cluster
17:  else if 𝛿1 < cos 𝜃 − cos 𝜃

𝑗 and 𝑠̃ − 𝑠𝑗 ≤ 𝛿2 and 𝑠𝑗 ≥ 𝛿3 then
18:  Add 𝑗 to agg ⊳ Cluster passes adaptive threshold test

return agg

4. Performance evaluation

4.1. Experimental setup

Datasets. We used two image classification datasets from different 
mains in out experiments.
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Table 1
Model architecture used on MNIST.
 Layer type Size  
 Conv + ReLU 10 × 5 × 5 
 Max pooling 2 × 2  
 Conv + ReLU 20 × 5 × 5 
 Max pooling 2 × 2  
 FC + ReLU 50  
 FC (Logits) 10  

Table 2
Model architecture used on CIFAR-10.
 Layer type Size  
 Conv + ReLU 32 × 3 × 3 
 Max pooling 2 × 2  
 Conv + ReLU 64 × 3 × 7 
 Max pooling 2 × 2  
 FC + ReLU 512  
 FC (Logits) 10  

Table 3
Accuracy (%) under various model poisoning attacks on non-IID datasets (𝛼 = 0.5). 
Our method TACRC-FL consistently outperforms other defenses across different attack 
types.
 Dataset Method FedAvg MKrum Trim Median RFA RLR Ours  
 

MNIST 
(𝛼 = 0.5)

No Att. 98.57 98.19 98.21 97.97 97.91 98.11 98.28 
 Fang 97.22 87.72 93.84 93.72 09.76 93.26 98.41 
 LIE 93.09 10.35 87.96 92.28 97.42 93.44 98.45 
 Min-Max 97.77 95.34 96.47 95.68 09.80 96.92 98.50 
 Min-Sum 97.76 96.80 95.90 93.76 79.87 97.17 98.48 
 Sign. 97.24 97.73 96.91 97.12 97.03 96.94 97.96 
 Add. 94.97 98.41 98.12 97.98 97.98 97.41 98.34 
 Avg. 96.66 83.50 95.34 95.50 69.96 96.17 98.34 
 

CIFAR10 
(𝛼 = 0.5)

No Att. 60.26 55.38 56.90 57.73 45.13 58.01 57.63 
 Fang 52.52 36.98 44.30 36.20 38.28 40.37 58.34 
 LIE 42.92 23.08 30.58 29.13 44.98 31.80 57.69 
 Min-Max 53.25 44.84 51.17 54.53 43.27 55.81 57.07 
 Min-Sum 51.99 51.07 53.23 49.48 47.97 57.77 57.96 
 Sign. 44.72 55.76 49.26 52.24 41.99 50.40 57.20 
 Add. 26.42 58.22 58.78 55.86 50.57 32.66 57.28 
 Avg. 47.44 46.47 49.17 47.88 44.59 46.68 57.59 

• MNIST: 10-class handwritten digit image classification dataset 
consisting of 60,000 training samples and 10,000 testing samples.

• CIFAR10: The CIFAR10 dataset consists of 60,000 32 × 32 color 
images in 10 classes, with 6000 images per class. There are 
50,000 training images and 10000 test images.

Non-IID. To simulate different degrees of non-IID data distribution 
among these clients, we used the Dirichlet distribution to sample the 
data. The parameter 𝛼 of the Dirichlet distribution controls the level 
of heterogeneity in the labels. Smaller values of 𝛼 resulted in greater 
label heterogeneity. Unless otherwise specified, we set 𝛼 = 0.5 in our 
experiments.

Model. We trained on the above two datasets to verify the versatility 
of TACRC-FL. Specifically, for the MNIST dataset and CIFAR10 dataset, 
we employed a convolution neural network (CNN) for training. The 
architecture of the CNN model was detailed in Tables  1 and 2.
FL Setting. In each round, 128 clients participated in the training. Each 
round, we randomly sampled 32 clients to evaluate the impact of attack 
and defense on model training. Each client trains 5 epoch locally, batch 
size of 𝐵 = 16 for MNIST and 𝐵 = 64 for CIFAR10. In addition, we 
constructed a rigorous adversary scenario by configuring 2 parameters, 
i.e., malicious client number and non-IID degree (this is determined 
by the parameter 𝛼 sampled by dirichlet). Unless otherwise specified, 
our experiments were performed under the settings of 8 malicious 
client clients and 𝛼 = 0.5. In addition, We set thresholds 𝛿 = 0.05, 
1

6 
Table 4
Defense performance against adversarially crafted Byzantine attacks under non-IID data 
partitioning (𝛼 = 0.5). Our proposed TACRC-FL achieves consistently strong results 
compared to state-of-the-art baselines.
 Dataset Attack FedAvg MKrum Trim Median RFA RLR Ours  
 MNIST 
(𝛼 = 0.5)

No Att. 98.57 98.19 98.21 97.97 97.91 98.11 98.28 
 Adv. 53.88 98.32 96.37 96.49 97.45 79.36 98.41 
 CIFAR10 
(𝛼 = 0.5)

No Att. 60.26 55.38 56.90 57.73 45.13 57.01 57.63 
 Adv. 10.00 58.29 41.49 51.52 33.45 10.00 57.80 

𝛿2 = 0.05 and 𝛿3 = 0.2 in TACRC to control aggregation of clusters. It is 
worth noting that in order to reduce the amount of computation, our 
method only uses the neuronal values randomly sampled by the fully 
connected layer when calculating the nearest neighbors. The features 
are normalized before clustering.
Attack Settings.  We consider seven types of untargeted model poi-
soning attacks. In each case, the attacker is assumed to have access 
to the gradient of the benign client’s local model update. The attacks 
include: (1) Fang [24], (2) LIE [42], (3) Min-Max, (4) Min-Sum, 
(5) Sign Flipping (abbreviated as Sign.), (6) Additive Noise (Add.), 
and (7) the average performance across all attack types (Avg.). These 
abbreviated names are used consistently in our result tables for clarity. 
In the following, we briefly describe the implementation details of each 
attack. 

• Fang. Is an optimization based model poisoning attack. Specially, 
the adversary uses the update gradient of the benign model to 
calculate the average 𝜇, and then solves for the scaling coefficient 
𝜆 and direction −𝑠𝑖𝑔𝑛(⋅). 𝜆 is used to narrow the update gradient 
in the direction of malicious updates [24].

• LIE. The adversary computes the average 𝜇 and standard devia-
tion 𝜎 of benign model gradients. The resulting malicious update 
is 𝜇 + 2𝜎. The calculated coefficients are used to add noise to 
each dimension of the model update to influence the final global 
model. And ensure that the malicious model gradients is within 
the monitoring range of defense [42].

• Min-Max. Use the maximum sum of squares of any two benign 
models to update the gradients as an upper bound. Compute the 
malicious gradient, that the sum of the square of the malicious 
gradient update and the gradient update of any client does not 
exceed the upper bound [26].

• Min-Sum. This method Compute the sum of squares of all benign 
gradients as an upper bounded. Ensure that the maximum sum of 
the squared distances of the distance between the malicious gra-
dient and all the benign gradients does not exceed the previously 
calculated upper bound [26].

• SignFlipping. SignFlipping Attack is an untargeted attack, where 
the malicious clients flip the signs of their local model up-
dates [43,44]. Since there is no change in the magnitude of the 
local model updates, the SignFlipping attack can make hard-
thresholding based defense fail [45].

• AdditiveNoise. Add random noise to each dimension [43,44]. 
This approach does not consider benign update gradients and 
server aggregation. It is easier to detect, but more impact on the 
model.

• Adversarial lens. This type of method adopts an adversarial 
perspective, where an alternating minimization strategy is used 
to iteratively optimize both stealthiness and attack efficacy. By 
balancing the trade-off between invisibility and adversarial ob-
jectives, the attack becomes more effective and harder to de-
tect [46]. 

Robust aggregation. We compared our approach, TACRC-FL, with 
four aggregation rules [1,30,31], and conducted experiments on multi-
ple attacks using two datasets. The aggregation rules considered were 
FedAvg [1], MKrum [30], Trimmedmean [31], Median [31], RFA [47] 
and RLR [48]
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Fig. 4. w/o Attack under MNIST and CIFAR10 with 𝛼 = 0.5.

Fig. 5. Attack and defense under CIFAR10, using non-IID partitioned datasets with 𝛼 = 0.5.
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Fig. 6. Six kinds of attack impact on four defense method.
Fig. 7. Six kinds of attack impact on TACRC-FL.
8 
Fig. 8. The impact of different proportion of malicious client on our method under 
six attacks.
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Fig. 9. Cluster feature on MNIST and CIFAR10, (a), (b), (c) show the results on MNIST, (d), (e), (f) show the result on CIFAR10.  (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
4.2. Experiment

All experiments were performed on a server running Ubuntu
22.04LTS, with 1 NVIDIA GeForce RTX 3090 Ti (with 24 GB memory) 
and 64 GB RAM.

4.3. Experimental result

Performance Evaluation. We evaluate the performance of our pro-
posed TACRC-FL against six state-of-the-art model poisoning attacks 
and compare it with other state-of-the-art defenses. Table  3 presents the 
test accuracy using LeNet on non-IID partitioned MNIST and CIFAR-10 
datasets with a Dirichlet coefficient of 𝛼 = 0.5.

Fig.  4 illustrates the model performance under no attack with 𝛼 =
0.5. The accuracy of our proposed method TACRC-FL is close to that of 
9 
FedAvg without attack, indicating minimal performance degradation in 
benign settings. Fig.  5 depicts the performance under six attack types 
on CIFAR-10. It is evident that TACRC-FL significantly mitigates the 
impact of strong model poisoning attacks. Among these, the Fang and 
LIE attacks are the most detrimental, substantially degrading FedAvg 
and bypassing other defenses. Although SignFlipping and AdditiveNoise 
are relatively easier to detect, they still cause considerable damage 
to FedAvg. Min-Max and Mix-Sum result in only slight reductions 
in accuracy, but these impacts are also effectively alleviated by our 
defense.

Table  3 summarizes the accuracy of seven aggregation methods 
after 100 rounds of training under all attack types and the no-attack 
setting. On MNIST, the model is easier to train, and attacks have 
a relatively smaller effect. FedAvg achieves an average accuracy of 
96.46%, with a maximum of 98.57% and a minimum of 93.09%, result-
ing in an accuracy drop of 5.48%. In contrast, TACRC-FL achieves a 
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Fig. 10. Accuracy evaluate of different 𝛼 setting under six kinds of attacks on CIFAR10.
maximum accuracy of 98.50%, a minimum of 97.96%, and an average 
drop of only 0.54%, showing that our method is approximately 10×
more effective in resisting attacks. Table  4 further compares the global 
model accuracy under adversarially robust Byzantine attack scenarios 
across seven aggregation algorithms. Without defense, the global model 
converges to suboptimal accuracy. Compared to existing defenses, our 
method achieves consistently competitive results.

For CIFAR-10, the average accuracy of FedAvg under six attacks 
is 47.44%, with the worst being 44.59%. Our method achieves a 
significantly higher average accuracy of 57.59%. The average attack 
impact under TACRC-FL is 2.67% (60.26–57.59), while the best base-
line defense (TrimmedMean) suffers an average impact of 11.09% 
(60.26–49.17). Therefore, TACRC-FL is approximately 4× more effec-
tive at mitigating poisoning attacks on this dataset.
TACRC-FL Stability Against Attacks. Fig.  6 illustrate the fluctuations 
in the impact of six attacks on four aggregation methods. Compared 
10 
with Fig.  7, the global model obtained by the four aggregation methods 
has relatively large fluctuations in the six kinds of attack, indicating 
that it cannot better resist multiple attacks. On the contrary, the global 
model evaluated by our aggregation method TACRC-FL has less fluc-
tuation, indicating that it has better defense effect against all six kinds 
of attacks.

The Influence of Adversary Number. In our experiment, 32 clients 
were randomly selected to participate in training in each round, and the 
proportion of existing clients was 𝜖. Then the aggregate global model 
is obtained by the aggregation algorithm . In this experiment, we set 
epsilon to a different value 12.5%, 25%, 37.5%, 50%, 62.5% and 75% 
respectively. Fig.  8 showed the evaluation result for different attacks 
with different proportions of the number of malicious clients. Although 
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Table 5
Accuracy of our defense method under varying 𝛿1 while keeping 𝛿2 = 0.05 and 
𝛿3 = 0.2 fixed. The results indicate the defense is not overly sensitive to 𝛿1, confirming 
its robustness.
 𝛿1 𝛿2 𝛿3 Adv. Sign. Add.  
 0.05 0.05 0.2 57.80 57.20 57.08 
 0.10 0.05 0.2 57.38 57.45 53.04 
 0.15 0.05 0.2 56.59 57.49 53.09 
 0.20 0.05 0.2 57.26 53.95 51.84 
 0.25 0.05 0.2 56.29 55.25 55.61 

Table 6
Accuracy of our defense method under varying 𝛿2 while keeping 𝛿1 = 0.05 and 𝛿3 = 0.2
fixed. The defense maintains stable performance across a wide range of 𝛿2 settings 
against different attack types.
 𝛿1 𝛿2 𝛿3 Adv. Sign. Add.  
 0.05 0.05 0.2 57.20 57.08 57.80 
 0.05 0.10 0.2 55.98 57.27 57.44 
 0.05 0.20 0.2 53.81 53.81 58.68 
 0.05 0.30 0.2 56.37 56.39 56.20 
 0.05 0.40 0.2 57.69 57.54 55.35 
 0.05 0.50 0.2 57.13 57.19 51.71 

the proportion of malicious clients had increased to 75%, our method 
can still effectively defend and get a convergent global model.
Validity of Clustering Factors. To validate the effectiveness of the 
proposed clustering factor in distinguishing between malicious and 
benign models, we visualized the clustering factor in three-dimensional 
space, as shown in Fig.  9. To validate the effectiveness of the pro-
posed clustering factor in distinguishing between malicious and benign 
models, we visualized the clustering factor in three-dimensional space. 
Due to the different local dataset and heterogeneous settings of the 
client, the clustering factors of the model are scattered in the feature 
space of the cluster. Fig.  9(a)–(f) shows the cluster factors of MNIST 
and CIFAR10 under two kinds of attacks and without attack. Green 
represents benign model updates and red represents malicious model 
updates. In our clustering space, out clustering factor can obviously 
separate benign and malicious. We think that the clustering factor 
in this part is extensible. After taking advantage of other exception 
assessments, this section can be populated to enhance TACRC-FL’s 
ability to defend against many types of attacks.
The Influence of Data Non-IID. We evaluate our method on differ-
ent dirichlet coefficient 𝛼, 𝛼 ranges from 0.2 to 1.0. Fig.  10(a)–(f) 
correspond to the accuracy changes of six attacks under different 𝛼
Settings of CIFAR10. It shows that the reduction of 𝛼 does not result 
in a performance loss for our method, which indicates that our method 
defends well against non-independent, identically distributed data.
Hyperparameter Analysis.  We conduct a comprehensive analysis 
of the hyperparameters 𝛿1, 𝛿2, and 𝛿3, as shown in Tables  5, 6, and 
7. In each experiment, we fix two of the parameters and vary the 
remaining one to evaluate the robustness of our defense method. The 
results demonstrate that our approach maintains strong robustness 
across a wide range of hyperparameter settings. Based on the overall 
performance, we select 𝛿1 = 0.05, 𝛿2 = 0.05, and 𝛿3 = 0.2 as the default 
configuration for the evaluation of our defense. 

5. Conclusion

This paper presents a robust aggregation algorithm, TACRC-FL, for 
federated learning (FL). It distinguishes benign model updates from ma-
licious ones by leveraging a set of trusted anchor clients. Specifically, 
we design three clustering factors that effectively separate benign and 
malicious client updates based on the anchor models. Leveraging these 
11 
Table 7
Accuracy of our defense method under varying 𝛿3 while keeping 𝛿1 = 0.05 and 
𝛿2 = 0.05 fixed. The results demonstrate consistent robustness across different 𝛿3
values against adversarial, sign-flipping, and additive noise attacks.
 𝛿1 𝛿2 𝛿3 Adv. Sign. Add.  
 0.05 0.05 0.1 58.07 52.32 57.78 
 0.05 0.05 0.2 57.20 57.08 57.80 
 0.05 0.05 0.3 55.65 57.18 56.04 
 0.05 0.05 0.4 56.19 55.72 57.69 
 0.05 0.05 0.5 56.64 57.02 56.89 

anchors, the proposed method identifies and filters out malicious model 
clusters to mitigate their adverse effects on global model aggregation. 
Extensive experiments under various Byzantine threat scenarios demon-
strate that TACRC-FL achieves strong robustness without requiring 
server-side clean data, and remains effective even in the presence 
of a high proportion of malicious clients and severe non-IID data 
distributions.

While this work focuses on untargeted Byzantine attacks, we ac-
knowledge that targeted threats—such as backdoor attacks—pose sig-
nificant and stealthy risks in FL. As part of future work, we plan to 
extend TACRC-FL to detect and defend against such targeted poisoning 
behaviors, further enhancing its applicability in real-world federated 
systems. 
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