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a b s t r a c t 

Source Camera Identification (SCI) achieves high accuracy on matching identification, in 

which the training and testing sample sets are derived from the same statistical distribu- 

tion. However, in practice the training and testing sets, namely, the source and test domains, 

may consist of digital images that are double compressed by various software and applica- 

tions with different quantization tables. Unfortunately, existing methods are inadequate in 

performance under such circumstances, such that we aim to find an algorithm that can fill 

the gap between the training and testing sets. In this work, we propose an algorithm, tri- 

transfer Learning (TTL), which is a cross-pollination of transfer learning and tri-training. For 

TTL, the transfer learning module transfers the knowledge learned from the training sets 

to improve the identification performance on testing. Compared with other methods, TTL 

uses a semi-supervised approach requiring only a small number of training samples and 

has better performance than other methods. The tri-training module, which is a variation of 

the co-training, facilitates knowledge transferring by assigning pseudo-labels to unlabelled 

instances and adds target instances with labels to the training set in batches. Combining 

the two modules, our framework can gain higher efficiency and performance than other 

state-of-art methods on mismatched camera model identification which is supported by 

experiments based on the open-source Dresden Image Database. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

With the development of modern technologies, the popularity
of smart devices with high-resolution cameras is growing.
With the growth of online social media and networks, digital
images play an important role in daily life. Additionally,
digital images are taken as evidence by the justice system.
∗ Corresponding author. 
E-mail address: bowang@dlut.edu.cn (B. Wang). 
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However, with numerous applications in the market, digital
image editing is no longer a professional skill, such that it is
easy to tamper or forge digital images without visible traces.
Recently, there have been several events with considerable
negative effects that involve tampered and forged digital
images that have harmed the public credence in the media
and press. Under this circumstance, a challenge arises, that
is, can we identify the authenticity and source of a forensic
image? The frequent use of digital media as critical evidence
has led to the rapid development of multimedia forensics in
the last decade Stamm et al. (2013) . SCI, which is an important
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Fig. 1 – Imaging pipeline in a digital camera. 
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ranch of multimedia forensics, aims to identify and authen- 
icate the source device of a given image Kharrazi et al. (2004) .
any methods have been proposed and we can categorize 
ost works on SCI into two categories: camera individual 

dentification and camera model identification Piva (2013) . 

.1. Camera individual identification 

he basic methods of camera individual identification mostly 
ocus on sensor pattern noise. Due to the manufacturing im- 
erfection, the difference in the size of the photodiode and 

he parameters of the MOS FET in each pixel structure may 
ause minor distortion in the pixel output signal. Researchers 
onsider those indelible marks left by the camera as defects 
hat can be used as fingerprints to identify the source camera.
hus, individual camera identification often uses SPN meth- 
ds. Lukas et al. Lukas et al. (2005) demonstrated the fea- 
ibility of using sensor pattern noise from images for digi- 
al camera identification. The pattern noise is extracted from 

mages using a wavelet-based denoising filter and they av- 
rage the noise obtained from several images to determine 
he camera patterns, which serve as the fingerprints. Evi- 
ently, the more accurate the SPN is, the higher the iden- 
ification accuracy. Therefore, researchers attempt to extract 

ore accurate SPNs by assigning weighting factors according 
o the magnitude of scene details or adopting adaptative fil- 
ers Hu et al. (2009) ; Kang et al. (2012) ; Lawgaly et al. (2013) ;
i (2010) ; Lukas et al. (2006) ; Sutcu et al. (2007) ; Wu et al. (2012) .

The multimedia forensic community has studied SPN- 
ased source camera identification for more than a decade.
any existing SPN-based methods have achieved a high de- 

ection accuracy on SCI. However, limitations affect the per- 
ormance of the SPN-based methods Li (2016) . Specifically, the 
haracteristics produced in the imaging acquisition process 
an impact the purity of the SPN and the content of the image 
an also contaminate the SPN. In addition, to obtain the prior 
nformation of source cameras, images taken by the test cam- 
ras are required. As a matter of fact, this is not a fully blind 

orensics method. 

.2. Camera model identification 

ost existing methods for camera model identification are 
ased on statistical features and follow a framework that re- 
ards camera model identification as a classification problem.
tatistical traces, such as white balancing, JPEG compression 

nd colour filter array in the images have the potential to link 
he images to the source camera models. Fig. 1 illustrates the 
rocess of acquiring an image with a digital camera. These 
tatistical features are often used to construct the training 
et for classifiers such as support vector machines (SVMs) or 
nsemble classifiers. The features are specific for the cam- 
ra model, such that they are often used for camera model 
dentification. A detailed discussion of the methods of cam- 
ra model identification is given in Section 2 . 

Although most statistical-feature-based camera model 
dentification methods can achieve high detection accuracy,
here are still some limitations. One limitation is that most 
f the methods are trained and tested in an ideal environ- 
ent in which the training and testing sets are derived from 

he same distribution. However, in practice, digital images are 
ore likely to be double compressed when they are uploaded 

o the Internet through apps, e.g., Facebook, Twitter and In- 
tagram. In scenarios in which the training set and testing set 
ismatches, namely, the training and testing samples are re- 

ompressed separately with different quantizations, the per- 
ormance of the existing methods declines dramatically due 
o the difference in statistical feature distributions between 

he training and testing sets. One solution is obtaining suffi- 
ient labels for the testing samples, but that is time and labour 
onsuming which is not acceptable commercially. 

.3. Our work 

n this paper, to address camera model identification in a more 
ractical scenario in which the training samples and testing 
amples are double compressed by different quantization ta- 
les, we propose an algorithm, tri-transfer Learning which 

ombines transfer learning and tri-training, a variant of co- 
raining to eliminate the difference between the source and 

arget distributions. Our method seeks to adapt the training 
et from the target domain to the source domain to transfer 
he knowledge from target domain to the training set. In ad- 
ition, our algorithm reduces the required accuracy for the 
seudo-labels at the initial iteration of the co-training and 

oes not need any labelled sample in the target domain com- 
ared with other algorithms that combine transfer learning 
nd co-training. 

• Transfer learning is used to bridge the gap between the 
source domain and the target domain to make the distribu- 
tions of the statistical features in the two domains closer. 

• Tri-training helps to assign the unlabelled instances in the 
target domain to the source domain (training set) with the 
pseudo-labels. 

In the field of camera model identification, this is the first 
ork using unlabelled samples with pseudo-labels to facili- 

ate knowledge in the source domain. The rest of the paper is 
rganized as follows. In Section 2 , we introduce some related 

ork. In Section 3 , our proposed method will be presented in 
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detail with pseudocode. In Section 4 , we present our experi-
ments and compare our results with competitors. Finally, we
conclude in Section 5 . 

2. Previous works 

2.1. Statistical feature-based camera model identification 

In the work proposed by Kharrazi Kharrazi et al. (2009) , the
features used for camera model identification consist of im-
age quality metrics (IQM), average pixel value, wavelet do-
main statistics, neighbour distribution centre of mass, RGB
pair energy ratio and pair correlation. An experiment on 5
different camera models achieveed an average accuracy of
88.02%. As JPEG compression is widely used by consumer-
level cameras, Kai et al., Kai et al. (2007) examined the JPEG
compression statistics left in the images for identifying the
source camera model. They used the number of bits per pixel
and the percentage of non-zero integers in each discrete co-
sine transform (DCT) coefficient to capture the correlation be-
tween the quality and size of a certain camera model. Kai
et al. Kai et al. (2006) use the lens radial distortion and com-
bine the statistics obtained from image intensities to clas-
sify the camera models. Gloe et al. Gloe et al. (2009) tested
the performance of feature-based camera model identifica-
tion on a large set of cameras from an in-depth analysis on
the intra-camera model similarity, the number of required de-
vices and images for training, and the effect of camera setting.
Their experiments showed that feature-based camera model
identification works in practice and provides reliable results.
Wang et al. Wang et al. (2009) used the higher-order wavelet
features and wavelet coefficient co-occurrence features from
taken images and applied the sequential forward feature se-
lection method to reduce the redundancy and correlation of
features. Wang et al. (2009) achieved a prominent improve-
ment in identification ability, especially for different models
of the camera same brand with an average accuracy of 96% on
6 camera models. 

Xu et al. Xu and Shi (2012) used the uniform grayscale in-
variant local binary pattern (LBP) from spatial domain of red
and green channels, the corresponding prediction-error arrays
and the 1 st -level diagonal wavelet sub-bands of each image.
The proposed scheme can capture the characteristics of image
processing algorithms such as JPEG compression, demosaick-
ing and filtering. The average accuracy of the LBP is 98.08%.
Ojansivu et al. Ojansivu and Heikkil (2008) proposed a local
phase quantization (LPQ) texture analysis in which the phases
of the four low-frequency coefficients are uniformly quan-
tized into one of 256 hypercubes in an 8-dimensional space
by operating on the Fourier phase computed locally for a win-
dow on every image position. Then a histogram collecting LPQ
codes for all image pixel neighbourhoods is obtained. Inspired
by Ojansivu and Heikkil (2008) ; Xu and Shi (2012) , Xu et al.
Xu et al. (2016) proposed to extracting local binary patterns
(LBP) from the original image, the residual noise image, and
the contourlet transform coefficients of the residual noise im-
ages. They also extracted LPQ features from the original image
and the residual noise image. It was shown that the method
using combined texture features extracted from HSV colour
space has a better detection accuracy. 

The colour filter array (CFA) modes and demosaic-
ing algorithms are different in cameras from different
brands and can be used for identification. Bayram et al.
Bayram et al. (2005) proposed identifying the source camera
based on traces of the colour interpolation algorithm. In their
work, the estimation of the interpolation coefficients, which
designates the amount of contribution from each pixel in the
interpolation kernel, was obtained by the expectation max-
imization algorithm. Then the interpolation coefficients, the
peak location, and the magnitudes are combined as the fea-
ture. However, the CFA pattern of an image is unknown and
we must try various CFA models and interpolation algorithms.
John et al. Ho et al. (2010) developed a method to measure the
correlations between the colour channels and construct a v-
map to match an image to its source. It achieved promising
results and addresses the problem of the unknown CFA pat-
tern. 

Some features of very high dimensions are also used for
identification. Roy et al. Roy et al. (2017) proposed a discrete
cosine transform residual (DCTR) that effectively captures the
JPEG compression artefacts imposed in the images by the
quantization table used for JPEG compression. Then the com-
bination of the random forest-based ensemble classification
and the PCA-based dimensionality is used to improve the clas-
sification accuracy for which the average accuracy obtained
is 97.08%. Chen et al. Chen and Stamm (2015) united a set of
submodels to build a rich model of the camera demosaicing
algorithm. For each CFA pattern and interpolating algorithm,
they utilized two co-occurrence matrices to capture the re-
construction error between the original image and the recon-
structed version. With all the co-occurrences merged, a 1372-
dimensional feature was obtained. 

Although those works have good performances, they still
suffer from double JPEG compression. Our work aims to ad-
dress the problem by reducing the difference between the dis-
tributions of training and testing datasets. 

2.2. Co-training 

Co-training was first proposed by Blum and Mitchell Blum and
Mitchell (1998) who trains two classifiers on independent
views (features) and used the most confident unlabelled sam-
ples of each other to augment the training data. The idea of co-
training, which utilizes natural redundancy, has been widely
employed in many other fields. The standard co-training algo-
rithm requires two sufficient and redundant views. Dasgupta
et al. Dasgupta et al. (2002) showed that when the requirement
is met, the algorithm could makes fewer generalizations. In-
spired by Blum and Mitchell (1998) , Nigam et al. Nigam and
Ghani (2000) showed that co-training algorithms are both dis-
criminative in nature and robust to the assumptions of their
embedded classifiers. Simultaneously, they proposed a new
algorithm combining the co-training and expectation maxi-
mization (co-EM) that improves the performance. To address
the high requirement of co-training, Zhou and Li Zhou and
Li (2005) proposed a new co-training style semi-supervised
method named tri-training. The method employs three clas-
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Table 1 – Different transfer learning settings. 

Transfer Learning 
Settings 

Related Areas Source Domain 

Labels 
Target Domain 

Labels 
Tasks 

Inductive Transfer Learning Multi-task Learning Available Available Regression Classification 
Self-taught Learning Unavailable Available Regression Classification 

Transductive Transfer 
Learning 

Domain Adaptation, 
Sample Selection Bias, 
Co-variate Shift 

Available Unavailable Regression Classification 

Unsupervised Transfer 
Learning 

∗ Unavailable Unavailable Clustering, Dimensionality 
Reduction 
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ifiers and can gracefully choose examples to label by using 
ultiple classifiers to compose the final hypothesis. 
Co-training is also widely used in many practical data min- 

ng applications. Kiritchenko et al. Nigam and Ghani (2000) 
ddressed the lack of labelled data in email classification by 
xploring co-training with a support vector machine (SVM).
n biometrics, Bhatt et al. Bhatt et al. (2011) used co-training 
o update classifiers with labelled as well as unlabelled in- 
tances. Hwa et al. Hwa et al. (2003) proposed an approach 

alled one-sided corrected co-training that requires manually 
nnotated decisions to address the problem, for which the 
arse is usually a complicated structure and not easy to label.

.3. Transfer learning 

he mismatched problem of target and source data distribu- 
ion also exists in other research areas, such as text classifica- 
ion and computer vision. The training and testing data are 
efined as the source and target domains, respectively. Pan 

nd Yang Pan and Yang (2010) surveyed the history of transfer 
earning, and presented a unified definition of transfer learn- 
ng that categorizes transfer learning into three different set- 
ings (given in Table 1 ). 

Some methods focus on using multi-task Learning to fill 
he gap between the source domain and target domain. Chen 

t al. Chen et al. (2011) proposed an algorithm named co- 
raining for domain adaptation (CODA) to slowly add both 

he target features and instances to the training set in 

hich the current algorithm is most confident. CODA outper- 
orms on the 12-domain benchmark dataset of Blitzer et al.
litzer et al. (2007) . In cross-lingual sentiment classification,
an Wan (2009) proposed a co-training approach to make use 

f unlabelled Chinese data to solve the limitation of the num- 
er of Chinese sentiment corpora by exploring the correla- 
ion between English corpora and Chinese corpora. Ng et al.
g et al. (2012) proposed a co-transfer learning algorithm us- 

ng a graph-based method to use the labelled data from dif- 
erent feature spaces to enhance the classification of differ- 
nt learning spaces simultaneously. The approach is super- 
ised and transfers the knowledge based on the affinities com- 
uted with co-occurrence information. Zhao et al. Zhao and 

oi (2010) proposed the online transfer learning (OTL) to trans- 
er knowledge from the source domain to an online learn- 
ng task on a target domain with an ensemble in a super- 
ised manner using incrementally labelled instances from the 
arget domain. Inspired by Zhao and Hoi (2010) , Bhatt et al.
hatt et al. (2014) proposed co-transfer learning (CTL) which 
s a cross-pollination of transfer learning and co-training by 
hanging the weights of the ensemble classifiers. However, the 
nsemble classifiers, in their framework, cannot be applied 

o our challenge of source camera model identification with 

ewer labelled samples in the target domain used at the be- 
inning. 

Researchers have also focused on projecting the original 
eatures of the two domains to another subspace by exploring 
he correlations between the training and testing dataset. Pan 

t al. Pan et al. (2011) proposed the transfer component analy- 
is (TCA) to learn a transformation that can minimize the dif- 
erence of the distributions in the projected feature subspaces.
ong et al. Long et al. (2014) proposed an algorithm named joint 
istribution adaptation (JDA) to simultaneously reduce both 

he marginal and conditional distribution differences of two 
omains in the projected subspace. 

For the mismatched camera model identification problem,
hang et al. Zhang et al. (2017) proposed a transformation 

ased on the Gaussian model to minimize the difference be- 
ween the source and target domains. However, the effective- 
ess of the method is quite limited. We found that the accu- 
acies of the algorithms decrease rapidly with the increasing 
ifference of quantization tables in the source and target do- 
ains. We will compare this method with tri-transfer learning 

n our work. 

. The proposed method 

umans can transfer knowledge among related tasks, which 

akes humans capable of quickly learning a new task related 

o previous learning experiences. However, in the context of 
amera model identification, traditional algorithms do not 
ave such ability in that they are unable to use prior knowl- 
dge from a related task, which may help to learn new tasks 
fficiently. Tri-transfer learning attempts to help algorithms 
o gain such ability. As we addressed previously, in practice,
abelled data in a double-compressed target domain is scarce,
uch that obtaining labels from a such target domain is ex- 
ensive and time consuming, and learning an effective model 

s difficult. However, a large number of unlabelled samples are 
vailable to help learn the model. 

In our method, transfer learning and tri-training are ap- 
lied jointly to transfer the knowledge from the source do- 
ain to the target domain. Selecting the ”positive” samples at 

 very low classification accuracy is the problem that we hope 
o solve. As shown in Fig. 2 , tri-training updates the training 
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Fig. 2 – Illustration of the tri-training process from the source domain to the target domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data in classifiers with unlabelled samples in the target do-
main. 

We assume that the data originate from two domains,
the source (training set) and target (testing set) domains.
The images in the two domains are different in quantiza-
tion tables. The data in the source domain are denoted by
D 

l 
s = 

{
(x S 1 , y 

S 
1 ) . . . , (x 

S 
n , y 

S 
n ) 

}
and samples from distribution P S ( X,

Y ). For each instance, x i has three views { x i ,1 , x i ,2 , andx i ,3 } and
a label y i ∈ { 1 , 2 . . . , m } . x i ,1 , x i ,2 , andx i ,3 represent the input
vectors from three separate views (features) that are utilized
for tri-training and m represents the number of camera model
categories. The target data are sampled from P T ( X, Y ), and all
samples are unlabeled and denoted as D 

u 
T = 

{
(x T 1 ) . . . , (x 

T 
n t ) 

}
. 

Our goal is to train the classifiers � ( x ) to accurately predict
the labels on the unlabelled samples of D 

u 
T , and extend them

to out-of-sample test samples. 

3.1. Sufficient and redundant 

Good diversity can significantly improve the performance of
ensemble learning and with co-training is concerned, there
are many methods for increasing diversity between learners
that can be easily generalized to tri-training. 

• Blum and Mitchell Blum and Mitchell (1998) first proposed
co-training based on naive bayes (NB), which requires two
sufficient and redundant features subsets. Therefore, page-
based and hyperlink-based feature subsets are established
in the two co-training learners, respectively. The final out-
put is determined by the posterior probability of combined
learners. 

• In some fields, it is difficult to obtain two sufficient and re-
dundant feature subsets, which means there are no natu-
ral attributes. As a result, single-view co-training was pro-
posed in Zhou and Goldman (2004) . This kind of co-training
splits a whole feature set into two sufficient and redundant
feature subsets and establishes learners on each feature. 

• Inspired by bagging, Zhou et al. Zhou and Li (2005) achieved
diversity by manipulating the original labelled example
set. Specifically, the initial training dataset is trained from
datasets generated via bootstrapping sampled from the
original labelled sample set. 

• Additionally, Goldman and Zhou Goldman and
Zhou (2000) achieved diversity by using different su-
pervised learning algorithms and the method does not
require sufficient and redundant views. 
For the application of diversity in camera model identi-
fication, there are many sufficient and redundant views. In
additon, bagging is applied to increase the diversity in our
algorithm. 

3.2. Tri-transfer learning 

Inspired by transfer learning and co-training, we design
a method to identify the double-compressed images with
mismatched training samples. The co-training algorithm is
shown in Algorithm 1 . 

Algorithm 1 Description of co-training. 

Require: 
A learning problem with two views V 1 and V 2 ; 
A learning algorithm h̄ ; 
The sets T and U of labelled and unlabelled examples; 
The number k of the iterations to be performed; 
Co − training : 

1: For k iterations; 
2: Use h̄ , V 1 (T ) and V 2 (T ) to create classifiers h 1 and h 2 
3: For each class C i : 

Let E 1 and E 2 be α unlabelled examples on which h 1 and h 2
make the most confident predictions for C i . 
Remove E 1 and E 2 from U. label them according to h 1 and
h 2 , respectively, and add them to T. 

4: Combine the prediction of h 1 and h 2 . 

To combine the co-training and transfer learning in mis-
matched source camera model identification, we should ad-
dress two challenges. First, unlike other algorithms combin-
ing the co-training and transfer learning, our method does
not use any information in the target domain. Second, the
more challenging work is that the initial accuracy of classi-
fiers is often very low, which means that the pseudo-labels for
the most confident samples of classifiers are probably wrong.
Sometimes, all the images in the target domain may be clas-
sified into the same category. Our work aims to address the
challenges of proposing an effective method by improving
co-training to tri-training which differs from the method in
Zhou and Li (2005) . As shown in the Fig. 3 , the source do-
main classifiers h A , h B , andh C are trained with sufficient la-
belled training data denoted by D 

l 
s = 

{
(x S 1 , y 

S 
1 ) . . . , (x 

S 
n , y 

S 
n ) 

}
. Ev-

ery classifier corresponds to a view (feature). U A , U B , andU C

are unlabelled samples from the target domain and are in
the different feature spaces. In the iteration, I a , I b , andI c are
the unlabeled data selected from U A , U B , andU C , respectively.
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Fig. 3 – Block diagram illustrating the steps of tri-transfer 
learning. 
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Algorithm 2 Tri-transfer learning. 

Input: U 

l 
s labelled samples from source domain 

U 

u 
t labelled samples from target domain 

h A classifier-based view 1. 
h B classifier-based view 2. 
h C classifier-based view 3. 
for i ∈ { 1 . . . , 3 } (number of views) do 
U i ← Boost st rapSample (U 

u 
t ) 

L i ← Boost st rapSample (U 

l 
s ) 

endfor 
repeat until does not satisfy the formula 

1: Allocate U 1 = U A , U 2 = U B , U 3 = U C and L 1 = L A , L 2 = L B , L 3 = 

L C and I 1 = I a , I 2 = I b and I 3 = I c 
2: Use h A to train on L A , use h B to train on L B and use h C to 

train on L C 
3: Use h A , h B and h C separately to predict each data x in U A , U B 

and U C : h A (x ) , h B (x ) and h C (x ) . In addition we can obtain the 
class probability estimation P ( ̂  y i | x ) A , P ( ̂  y i | x ) B and P ( ̂  y i | x ) C 

4: Update I a , I a is chosen from U A which has relatively high 

P( ̂  y i | x ) A with the constraint h B (x ) = ˆ y i or h C (x ) = ˆ y i 
5: Update I b , I b is chosen from U B which has relatively high 

P( ̂  y i | x ) B with the constraint h A (x ) = ˆ y i or h C (x ) = ˆ y i 
6: Update I c , I c is chosen from U C which has relatively high 

P( ̂  y i | x ) C with the constraint h A (x ) = ˆ y i or h B (x ) = ˆ y i 
7: Update L A = L A + I b + I c , L B = L B + I a + I c and L C = L C + I a + I b 
8: Remove I a , I b , and I c from U A , U B and U C 

end of repaet 
Output: h (x ) ← arg max 

y ∈ label 

∑ 

i : h i (x )= y 
1 

c
d
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or instance, using the classifier h A , we can obtain a set of 
amples in U A with P( ̂  y i | x ) A sorting from high to low. I a is the
ost confident sample set chosen from U A with constraint 

 B (x ) = ˆ y i or h C (x ) = ˆ y i . Here, confidence means that P( ̂  y i | x ) A is
elatively high in the samples. The constrain helps to ensure 
hat pseudo-labels are correct. Then, I a is transformed into the 
raining data of h B and h C . The proposed tri-transfer learn- 
ng algorithm for the camera model identification is shown 

n Algorithm 2 . 
In the original co-training formulation Blum and 

itchell (1998) , it is assumed that the two views of the 
ata are conditionally independent of classes. This assump- 
ion is strong and not applicable in practice. Balcan et al.
alcan et al. (2005) relaxed the requirement significantly to 
 condition of ε-expandability. For the two classifiers which 

hat can teach each other, they must make confident pre- 
ictions on different subsets of the unlabelled U . Following 
hen et al. (2011) , we define C i ( x ) A as a confidence indicator

unction (for same confidence threshold τ > 0). For i ∈ {1, 2, 3,
}, we define 

 i (x ) A = 

{ 

1 , i f P( ̂  y i | x ) A > τ

0 , otherwise 
(1) 

Similarly, we define C i ( x ) B , C i ( x ) C for i ∈ {1, 2, 3, 4}. The ε-
xpanding condition can be explained as follows. For any two 
ut of the three classifiers that meet the requirement, for ex- 
mple, h A and h B : 

 

 ∈ U 

∑ 

i 

[
(C i (x ) A ̄C i (x ) B + C̄ i (x ) A C i (x ) B ) 

]

≥ εmin 

⎡ 

⎣ 

∑ 

x ∈ U 

∑ 

i 

C i (x ) A C i (x ) B , 
∑ 

x ∈ U 

∑ 

i 

C̄ i (x ) A ̄C i (x ) B 

⎤ 

⎦ (2) 

Here, C̄ i (x ) A = 1−C i (x ) A indicates that the classifier h A is not 
onfident about the input x. Intuitively, the constraint in equa- 
ion(7) ensures that the input U can be used for iteration be- 
ause exactly one classifier is confident, which indicates some 
egree of independence between the two views in the set U . 

.3. Analysis 

or co-training, some work Angluin and Laird (1988) ; 
oldman and Zhou (2000) ; Zhou and Li (2005) has theo- 

etically analysed the feasibility. Here, we simply analyse 
he feasibility of the tri-transfer learning algorithm theoret- 
cally. In tri-training, three classifiers h A , h B and h C choose 
nlabelled data to recover the labels and the recovered data 
re considered as the new labeled data. We assume that | L |
abelled data are in the classifier after (t − 1) iterations and 

 L t | are the new recovered data in the t -th iteration. Therefore,
fter t iterations, the training data size becomes | L ⋃ 

L t | . Let ηL 

e the noise rate in the original label data L . e ∼t 
1 denotes the

pper bound of the classification error rate in | L t |. Hence we
btain the classification noise in the t -th iteration: 

t = 

ηL | L | + e ∼t 
1 | L t | 

| L ⋃ 

L t | (3) 

The works in Angluin and Laird (1988) ; Xu et al. (2012) pro-
osed that when the recovered data (with predicted labels) 

n the (t + 1) -th iteration have relatively smaller noise com- 
ared with labelled data e ∼t+1 

1 < ηt , the learning hypothesis 
an achieve lower error rate, which implies ε t+1 < ε. Here, the 
rror rate of the learning hypothesis ε is denoted as: 

 ∝ η (4) 
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Table 2 – Camera models used in the experiment. 

Camera Model Resolution Format Train/Test 

Agfa_DC-30i 3264 × 2448 JPEG 100/200 
Agfa_Sensor505_x 2592 × 1944 JPEG 100/200 
Canon_Ixus70 3072 × 2304 JPEG 100/200 
Casio_EX-Z150 3264 × 2448 JPEG 100/200 
FujiFilm_FinePixJ50 3264 × 2448 JPEG 100/200 
Kodak_M1063 3664 × 2748 JPEG 100/200 
Nikon_D70s 3008 × 2000 JPEG 100/200 
Nikon_CoolPixS710 4352 × 3264 JPEG 100/200 
Olympus_mju_1050SW 3648 × 2736 JPEG 100/200 
Panasonic_DMC_FZ50 3648 × 2736 JPEG 100/200 
Pentax_OptioA40 4000 × 3000 JPEG 100/200 
Praktica_DCZ5.9 2560 × 1920 JPEG 100/200 
Ricoh_GX100 3648 × 2736 JPEG 100/200 
Rollei_RCP_7325XS 3072 × 2304 JPEG 100/200 
Samsung_L74wide 3072 × 2304 JPEG 100/200 
Samsung_NV15 3648 × 2736 JPEG 100/200 
Sony_DSC_T77 3648 × 2736 JPEG 100/200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the beginning of the iteration, the constraint of tri-
transfer learning makes e ∼1 

1 < ηL . After every iteration, with
the correctly recovered samples (xεU 

u 
t ) , the distribution of

training data ( P M 

( X, Y )) in the classifiers is closer to the target
domain compared with the distribution of source data which
is: 

| P M 

(X, Y ) − P T (X, Y ) | < | P S (X, Y ) − P T (X, Y ) | (5)

We conclude that e ∼t+1 
1 < e ∼t 

1 . Intuitively, the noise from the
(t + 1) -th iteration is smaller than the classification noise rate
in the t -th iteration. 

e ∼t+1 
1 < 

ηt | L | + e ∼t 
1 | L t | 

| L ⋃ 

L t | (6)

Note that the newly labelled data in each iteration are dif-
ferent, so | L ⋃ 

L t 
⋃ 

L t+1 | = | L ⋃ 

L t | 
⋃ | L t+1 | , then we deduce: 

ηL | L | + e ∼t 
1 | L t | + e ∼t+1 

1 | L t+1 | 
| L ⋃ 

L t | 
⋃ | L t+1 | 

< 

ηt | L | + e ∼t 
1 | L t | 

| L ⋃ 

L t | (7)

Based on eq(7), we obtain ηt+1 < ηt . Finally, ε t+1 < ε t is
proven. 

4. Experiments 

In this section, we conduct extensive experiments to evalu-
ate tri-transfer learning method on mismatched source cam-
era model identification. We perform our algorithm based
on CFA Bayram et al. (2005) , LBP Xu and Shi (2012) and EDF
Chen and Stamm (2015) . Then, we compare our method with
several current forensic methods, co-training and the trans-
formation in Zhang et al. (2017) . We ensemble classifiers
Kodovsky et al. (2012) as basic classifiers and our method can
be generalized to other fields with any learning algorithm.
Even in the case that has only two views (A and B), we can
change the constraint to h B (x ) = ˆ y i for viewing A and h A (x ) = ˆ y i
for viewing B. 

4.1. Experimental setup 

4.1.1. Datasets 
We evaluate our algorithm on a public image database,
the ”Dresden Image Database” Gloe and Bhme (2010) . The
database introduces and documents a novel image database
specifically built for the development and benchmark-
ing of camera-based digital forensic techniques Gloe and
Bhme (2010) . We remove the camera categories without suf-
ficient images and choose 17 camera models from popular
camera bands from the database. The details can be found in
Table 2 . 

4.1.2. Details 
In our experiments, because image sizes vary in the database,
we extract LBP from the 512 × 512 subimage cropped from the
upper left corner, EDF from the 512 × 512 subimage cropped
from the upper left corner and CFA from the 256 × 256 subim-
age cropped from the centre. For every learner, we use 100
samples from the source domain as the initial training sam-
ples. The comparison algorithms are co-training Blum and
Mitchell (1998) and CCA Zhang et al. (2017) . For co-training,
we choose two features, EDF and LBP as the views that have
higher initial accuracy. Table 2 shows the setting of classifiers
for every view. The comparison algorithms have the same set-
ting as TTL. For the CCA, we follow the initialization of the data
in the paper in equation(8). 

x = 

x − min 
max − min 

(8)

For co-training and tri-transfer learning, we use the standard
scaler initialization in the equation(9). Therefore, the initial
accuracy of CCA and tri-transfer learning are different. We also
found that CCA is invalid when it uses standard scaler initial-
ization. 

x = 

x − μ

δ
(9)

To evaluate the effect of TTL in mismatched JPEG compres-
sion, we compress the source and target images with stan-
dard quantization tables from 75 to 100 with an interval of
5. Therefore, we can obtain T 100 , T 95 , T 90 , T 85 T 80 and T 75 of
the training data. Similarly, we also have T 100 , T 95 , T 90 , T 85 T 80

and T 75 of the test data. The uncompressed data of the train-
ing and testing sets are named S Ori and T Ori , respectively. In
practical forensic applications, the images we have are nor-
mally the original images. We conduct Experiment 1 by setting
the original images as the training data and the compressed
images as the testing images. The classifiers are built on S Ori

and applied to compressed sets T Ori , T 100 , T 95 , T 90 , T 85 T 80 and
T 75 . The initial and final results of TTL are shown in Table 3 .
Our method is suitable for conditions where training data are
re-compressed. In Experiment 2, we use S 95 and S 85 to build
identification models and then apply those to sets T Ori , T 100 ,
T 95 , T 90 , T 85 T 80 and T 75 . The results are listed in Table 4 - 5 .
The compared methods have the same TTL setting. For ev-
ery classification model, we set ste = 1 such that we select
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Table 3 – Identification accuracy (%) when training data are not re-compressed. 

CCA Co-training Tri-transfer Learning 

initial final initial final initial final 

Train → Test EDF LBP CFA EDF LBP CFA EDF LBP EDF LBP EDF LBP CFA EDF LBP CFA 

S Ori → T Ori 74.03 83.35 83.11 73.95 83.88 82.94 77.61 85.12 85.50 85.85 78.64 87.23 85.11 95.32 95.70 95.88 
S Ori → T 100 58.91 72.82 54.38 62.85 79.32 53.79 65.38 80.94 75.50 76.05 64.67 80.94 52.79 92.47 93.29 92.88 
S Ori → T 95 27.47 42.64 39.62 45.38 53.44 40.21 46.76 53.74 57.85 58.38 45.82 53.73 39.41 78.88 79.12 79.18 
S Ori → T 90 25.09 35.88 24.62 24.50 34.44 23.70 25.94 35.88 30.00 29.68 25.09 35.88 24.62 48.82 49.32 49.94 
S Ori → T 85 15.94 25.06 10.56 17.56 24.74 12.76 18.58 23.64 19.05 20.23 18.44 23.64 12.38 29.03 29.91 30.20 
S Ori → T 80 11.00 15.29 7.47 14.59 16.71 10.56 16.58 16.20 15.44 16.02 15.70 16.20 9.44 21.82 21.35 22.41 
S Ori → T 75 7.55 11.70 6.88 11.29 12.02 9.02 12.76 12.44 11.68 11.70 11.91 10.97 6.35 9.14 9.35 8.85 
Ave 31.42 40.96 32.37 35.72 43.50 32.37 37.65 43.99 42.20 42.55 37.17 44.08 32.87 53.64 53.99 54.18 

Table 4 – Identification accuracy (%) when training data are re-compressed with quality factor of 95. 

CCA Co-training Tri-transfer Learning 

initial final initial final initial final 

Train → Test EDF LBP CFA EDF LBP CFA EDF LBP EDF LBP EDF LBP CFA EDF LBP CFA 

S 95 → T Ori 46.74 54.65 45.62 51.29 61.82 45.18 55.06 63.00 71.11 71.70 55.65 63.03 46.44 90.97 91.09 90.32 
S 95 → T 100 49.08 48.55 69.59 59.79 62.18 72.56 63.97 63.94 75.05 74.52 63.82 63.94 76.09 91.82 92.50 92.79 
S 95 → T 95 62.67 78.35 73.79 63.26 77.73 73.88 68.53 80.73 77.07 78.61 69.91 80.74 80.21 90.59 91.38 91.76 
S 95 → T 90 36.44 31.47 42.21 32.79 36.23 45.74 36.54 48.74 46.62 48.62 36.44 48.74 37.68 62.47 63.00 62.47 
S 95 → T 85 23.79 22.91 19.71 22.41 25.97 24.85 24.47 25.70 26.38 26.64 24.35 25.70 27.55 35.50 35.29 36.32 
S 95 → T 80 17.61 14.94 13.79 19.26 18.73 17.41 21.06 17.08 20.12 19.64 20.64 17.08 18.26 27.56 28.82 28.94 
S 95 → T 75 12.91 11.26 9.58 14.26 13.52 11.35 15.23 12.79 16.47 16.88 13.76 12.79 11.82 18.14 18.50 18.17 
Ave 35.59 37.44 39.17 37.57 42.31 41.56 40.68 44.56 42.54 48.08 40.64 44.57 42.57 59.57 60.08 60.11 
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ne sample from each category and add the samples to the 
raining data in other classifiers in each iteration. In addi- 
ion, we take the accuracy of the 160-th iteration as the final 
esult. 

.2. Results and discussions 

o evaluate the effectiveness of our method, we conduct ex- 
ensive experiments under different conditions. The initial 
nd final classification accuracy of TTL and other baseline 
ethods are listed in Table 3 -5. The highest accuracy for each 

ismatched task is highlighted. 

.2.1. Experiment 1: 
or Experiment 1, the training data are original images, and 

he testing data are all re-compressed with different quantiza- 
ion tables. The results are listed in Table 3 . It is observed that 
TL has the best performance compared with other methods 
nder this condition. CCA and co-training are effective, but 
he effect is far inferior to tri-transfer learning. For S Ori to T 90 

nd T 95 , the initial accuracies of classifiers are lower than 0.5,
hich violates the assumption of co-training. Compared with 

o-training, the proposed method gains a significant improve- 
ent. Even if the initial accuracy of TTL is approximately 30%,

TL can guarantee a beneficial effect on the algorithm. Fig. 4 
hows the results of each iteration in the condition S Ori to T 90 .
or S Ori to T 95 − T Ori , although the accuracies of classifiers are 
igher, TTL with the proposed constraints to select samples 

s more accurate than co-training. The result of each iteration 
f TTL is shown in Fig. 5 Therefore, TTL also performs better 
han co-training. 

For the condition η < 0.5, Fig. 6 shows the comparison of 
TL and co-training for S Ori to T 90 . Similarly, Fig. 7 shows the
omparison between TTL and co-training for S Ori to T 95 under 
he condition η > 0.5. Here, the reason why we used S Ori to T 90 

nd T 95 as examples is that they represent low initial accuracy 
nd high initial accuracy, respectively. 

In Fig. 4 , the selection accuracies for each view are low 

nd sometimes they are even lower than 0.5. However, the 
dentification accuracy of TTL can continue increasing be- 
ause of the constraints. As the data distribution of the tar- 
et domain and the source domain continues to increase,
he identification accuracy and the selection accuracy in- 
rease. In addition, we determine whether it is EDF, LBP 
r CFA, the identification accuracies of h A , h B and h C be- 
ome closer and each eventually converges to a certain 

alue. 
Fig. 5 shows the condition of η > 0.5. Although the selec- 

ion accuracy is high, the pseudolabel for the most confident 
amples may still have errors. The constraint can also help to 
elect more accurate samples. 

Fig. 6 and Fig. 7 show the comparison of tri-transfer learn- 
ng and co-training for S Ori to T 90 and T 95 with view LBP and
DF. For testing data of T 90 , the identification accuracy of co- 
raining drops and converges to a lower accuracy than the 
riginal accuracy. However, for Tri-transfer learning, the result 
hows a higher convergence trend. Moreover, the performance 
f TTL is obviously better than co-training. 
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Fig. 4 – The accuracy of each iteration for S Ori to T 90 . (a) The accuracy of Classifier h A for LBP.The accuracy of Classifier h B for 
CFA.The accuracy of Classifier h C for EDF. (b) The selection accuracy of h A , h B , h C for the remaining samples after selection. 

Fig. 5 – The accuracy of each iteration for S Ori to T 95 . (a) The accuracy of Classifier h A for LBP.The accuracy of Classifier h B for 
CFA.The accuracy of Classifier h C for EDF. (b) The selection accuracy of h A , h B , h C for the remaining samples after selection. 

Fig. 6 – The accuracy of each iteration for S Ori to T 90 . (a) The accuracies of TTL and co-training for EDF. (b) The accuracies of 
TTL and Co-training for LBP. 
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Fig. 7 – The accuracy of each iteration for S Ori to T 95 . (a) The accuracies of TTL and co-training for EDF. (b) The accuracies of 
TTL and Co-training for LBP. 

Fig. 8 – The accuracy of each iteration for S Ori to T 90 . (a) The accuracy of Classifier h A of LBP.The accuracy of Classifier h B for 
EDF.(b)The selection accuracy of h A , h B , h C for the remaining samples after selection. 
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Fig. 8 and Fig. 9 show the classifier accuracy and selection 

ccuracy of co-training for S Ori to T 90 and T 95 . For the test data 
f 90, we see that if the value of selection accuracy is low to 
 certain degree, it will negatively impact on identification ac- 
uracy. However, when the selection accuracy is high enough,
he co-training performance is not satisfactory in the case that 
he identification accuracy is also high. Comparing the selec- 
ion accuracy of tri-transfer learning in Fig. 4 and that of co- 
raining in Fig. 8 , it is not difficult to explain why tri-transfer 
earning performs better. 

We can also find that TTL fails with quality factors lower 
han 75% in Table 3 . It shows that certain conditions are re- 
uired for TTL to be effective. 

.2.2. Experiment 2: 
or Experiment 2, the training samples are also re- 
ompressed, and the experimental results are shown in 

able 4 - 5 . 
We notice that the traditional forensic methods perform 

etter when the training set and the testing set are matched.
owever, the larger the domain shift is, the poorer the result.
ompared with co-training and CCA, the TTL performs best in 

ll the condition. Simultaneously, we also find some interest- 
ng results. 

First, the final results of TTL often depend on the distribu- 
ion of the target data and the gap between the target domain 

nd source domain. Taking the training data of S 95 as an ex- 
mple, we notice that the initial accuracy is the highest when 

he test data are T 95 , which means that the training data and
est data are matched. However, the final results of S 95 to T 100 

re better. The phenomena can also be found in other training 
ata with different quantization tables in Table 5 . 

Second, when the gap between the training data and test- 
ng data is too large, the results are greatly affected. As shown 

n Table 8, the accuracies of S 85 to T 100 , T 95 , T 90 are only 76.54%,
8.13% and 80.38%, respectively. If the gap is in a certain range 
hat the selection accuracy is sufficient to ensure that the se- 
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Fig. 9 – The accuracy of each iteration for S Ori to T 95 . (a) The accuracy of Classifier h A of LBP.The accuracy of Classifier h B for 
EDF (b)The selection accuracy of h A , h B , h C for the remaining samples after selection. 

Table 5 – Identification accuracy (%) when training data are re-compressed with quality factor of 85. 

CCA Co-training Tri-transfer Learning 

initial final initial final initial final 

Train → Test EDF LBP CFA EDF LBP CFA EDF LBP EDF LBP EDF LBP CFA EDF LBP CFA 

S 85 → T Ori 19.55 31.32 18.59 20.29 33.18 28.32 23.00 35.85 32.79 32.32 23.17 35.85 28.08 60.29 61.70 63.47 
S 85 → T 100 21.73 24.76 24.59 23.76 33.79 39.59 27.06 37.70 34.58 34.17 28.82 37.70 44.38 69.85 70.79 72.35 
S 85 → T 95 24.15 22.14 25.53 26.44 34.74 36.71 28.76 35.88 35.20 36.76 30.97 35.88 40.94 65.50 66.44 67.00 
S 85 → T 90 32.88 38.41 32.00 35.85 42.88 34.17 39.97 49.03 46.26 48.44 42.61 49.03 41.32 71.73 72.67 74.08 
S 85 → T 85 49.03 61.68 43.23 49.94 60.17 43.44 53.38 69.00 60.02 61.90 57.32 69.00 53.73 76.76 78.26 77.41 
S 85 → T 80 29.00 38.09 28.68 31.18 41.32 29.53 35.14 45.47 38.88 40.53 37.32 45.50 35.88 52.79 53.85 51.64 
S 85 → T 75 20.08 22.03 20.06 25.26 29.61 22.20 29.32 32.47 30.08 31.32 30.41 32.47 27.14 37.76 38.88 38.70 
Ave 28.06 34.05 27.52 30.38 39.38 33.42 33.80 43.62 39.68 40.77 35.80 43.63 38.78 62.09 63.22 63.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lected samples contribute to the classifiers, the result is excit-
ing. 

5. Conclusion 

In this paper, we propose a novel iterative algorithm tri-
transfer learning for the mismatched camera model identifi-
cation of re-compressed images. TTL aims to fill the gap be-
tween the training data and testing data by labelling the test
samples and adding them to the training data with pseudo-
labels. Many experiments on the Dresden Image Database and
synthetic data show the effectiveness of TTL compared with
co-training and other algorithms. The results show that TTL
outperforms several state-of-the-art methods on mismatched
camera model identification. 
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