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A B S T R A C T

Source camera model identification has always been one of the main fields of digital image forensics since it is the
foundation of solving a wide range of forensic problems. Several effective camera model identification algorithms
have been developed for the practical necessity. However, they are mostly based on traditional machine learning
methods and rely on well-designed features or models. Since deep learning has made great progress in computer
vision tasks, significant interest has arisen in applying deep learning in image forensics. In this paper, we present a
deep learning approach to tackle source camera model identification problem. We modify a convolutional neural
networks (CNNs) structure similar to AlexNet and equip it with a simple local binary patterns (LBP) preprocessing
operation. The identification accuracy on the public database ‘‘Dresden Image Database’’ achieves 98.78% over
12 camera models without any other sophisticated procedures, for instance, extra classifier, majority voting, etc.

1. Introduction

With the development of information technology and social media
networks, digital images are found everywhere in our daily life and
nearly become the most pervasive information carrier. Besides playing
an important role in information spreading, digital images, as a kind of
visual data, are usually regarded as a certification of truth or evidences
in front of a court of law since we traditionally believe in the integrity
of what we see. However, people can acquire images easily with the
popularity of inexpensive cameras and cell phone devices, and more
importantly, can also manipulate them from the source information
to contents and even create ones as they want with the development
of image manipulation softwares and social networks over the years.
Therefore, the situation highlights the necessity to verify the source and
authenticity of digital images. It is a key work in the field of digital
image forensics [1].

As one main field of image forensics, source camera identification
has two branches. One is to match an image with one individual camera,
and the other is to match it with a specific camera model. For these
tasks, the researchers have been devoted to studying the pipeline of
image acquisition process and exploiting traces or artifacts introduced
to the images to capture source information. As shown in Fig. 1,
image acquisition process involves several stages each of which can
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be implemented differently in different cameras. Consequently, some
unique traces or artifacts are introduced in the final images. According
to those traces from given cameras, a variety of camera identification
approaches have been proposed and they can be categorized into two
groups.

The first group of methods managed to compute a hypothesized
analytical model on certain stages of image acquisition and then eval-
uates the correlation between the model and the tested image. Lucas
et al. [2] used a sensor pattern noise model to identify the source
camera sensors. Choi et al. [3] chose a lens radial distortion pattern as a
fingerprint. Dirik et al. [4] utilized dust-spot characteristics to identify
the source digital single lens reflex camera. In order to extract reliable
photo-response non-uniformity (PRNU), Amerini et al. [5] introduced a
minimum mean square error (MMSE) filter in the un-decimated wavelet
domain to estimate the PRNU noise. Li [6] suggested that an enhanced
fingerprint can be obtained by assigning weighting factors according
to the magnitude of scene details to eliminate the influence of image
content. Furthermore, Tomioka et al. [7] proposed a method based on
the pairwise relationships of pixel clusters to suppress the effects of
noise contamination. Recently, Li et al. [8] proposed the use of principal
component analysis (PCA) to formulate a compact SPN representation.
Besides, a training set construction procedure was also proposed to
enhance the de-noising effect in [8].
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Fig. 1. A common digital image acquisition process. When a digital camera captures an image, the light reflected by the real scene firstly pass through the optical lens
and the filter. Before hitting the imaging sensor which is usually only one and can only record on color value at each pixel, a color filter array(CFA) is used to allow
only one color component of light to pass through it at each position. Then the other two color channels are interpolated by specific CFA interpolation algorithm
which is known as demosaicing algorithm. After demosaicing, a set of post-processing operations including software processing and in-camera JPEG compression
are performed to obtain a digital image. Finally, the image experiences some out-camera processing such as data transmission and computer processing to generate
the final digital image.

The other group of methods relied on well-designed feature vector
extraction and machine learning classifiers. Swaminathan et al. [9] con-
structed an efficient camera identifier through estimating interpolation
coefficients of color filter array (CFA). Xu et al. [10] extracted 354-
dimensional features based on local binary patterns (LBP) to distinguish
camera models. Hu et al. [11] developed an improved algorithm us-
ing inter-channel demosaicing traces for camera model identification.
Tuama et al. [12] proposed a method to extract high order statistics
consisted of co-occurrences matrix, traces of color dependencies features
related to CFA interpolation arrangement, and conditional probability
statistics. A better identification result compared with the correlation
based method was reported in their paper. Different from [10], the
recent work [13] also investigated the discriminative ability of local
phase quantization (LPQ), a LBP like texture descriptor, to distinguish
imaging devices. The combined texture features of LBP and LPQ resulted
in higher identification accuracy compared with [10]. Chen 𝑒𝑡 𝑎𝑙 [14]
built a rich model of 1372-dimensional features to identify the model
of an image’s source camera. They utilized two co-occurrence matrixes
to capture the reconstructed error between the original image and the
reconstructed version. The average identification accuracy of 99.2%
over 12 camera models was reported in their paper.

On the other hand, the convolutional neural networks (CNNs) ,which
are strong in feature learning, have made great success in computer
vision tasks and developed rapidly since 2012 [15–18]. These achieve-
ments arouse attention from the community of digital image forensics
and several works have been done to exploit suitable approaches to
apply CNNs to solve forensic problems. Baroffio et al. firstly applied
CNNs to identify source cameras, but the poor performance indicated
that the CNNs designed for computer vision (CV) cannot be suited
to camera identification directly. On the basis, they proposed a new
approach to dealing with camera identification in [19]. They simply
regarded CNNs as a feature extractor and combined the networks with
SVM classifiers to complete the classification tasks. Chen et al. [20]
noticed that the difference among classes of image forensics problems
is subtle and added a preprocessing layer before CNNs for median
filtering forensics. This preprocessing process achieved a significant
boost in performance. Bayer et al. [21] proposed a new convolutional
layer which is similar to a preprocessing layer as a part of the CNNs
to detect image manipulation. Tuama et al. [22] presented a CNNs
structure similar to AlexNet and equipped it with a high-pass filter (HPF)
layer [23] to cope with camera model identification. Their experimental
results showed the important role that preprocessing part plays in
classification accuracy and indicated that trying the bigger networks

such as GoogleNet or ResNet might be promising. The experimental
results in [24] also confirmed the points mentioned above. Recently,
Yang et al. [25] proposed content-adaptive fusion residual networks to
detect image origin and achieved satisfactory performances in the case
of query images with small size in camera brand identification. But for
camera model identification, the detection accuracy is only 87.55%, so
there is still much room for improvement.

The CNNs method is promising but not efficient enough for camera
model identification. Firstly, the database available is not as large as
ImageNet. Therefore, the CNNs cannot be very deep, or rather the
effectiveness of training may be affected. Secondly, the CNNs tailored
for CV are sensitive to the primary visual information of an image rather
than the intrinsic source information which is invisible for the naked
eyes. From the view of the current situation of the related research, the
intrinsic source information is mostly hidden in the noise of images or
other statistical features. It might be not realistic to let CNNs capture
such low signal-to-noise signals. However, we can make ‘‘glasses’’ for
CNNs so that the effective source information can be enlarged in the
‘‘eye’’ of CNNs or exists in a way that is easier to be recognized by CNNs.
That is to say, we can give some hints or guidance to CNNs. Therefore,
we propose that CNNs can capture the information that human’s eyes
cannot perceive and accomplish the camera model identification tasks
with the help of research results from the experts of related fields.
Particularly, we modify a shallow CNNs architecture like AlextNet and
use the simplest LBP operator to help the CNNs to extract source camera
information of images. Experimental studies illustrate that our method
achieves better classification accuracy results compared with the state-
of-art classical and CNN-based methods.

The rest of the paper is organized as follows. Section 2 explains the
details of our proposed method. In Section 3, extensive experiments
are carried out and comparisons of state-of-art are presented to show
the superiority of proposed method. And, conclusions of the paper are
drawn and some perspectives are proposed in Section 4.

2. Proposed method

In this section, we firstly present the description of coding pre-
processing operation which is applied before the CNNs architecture
based on local binary patterns. Then the CNNs architecture as well
as the design considerations are introduced in details . Finally, the
implementation details of training and testing process are presented
including our selection or adjustment strategies of some key parameters.
The framework of the proposed method is illustrated in Fig. 2.
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Fig. 2. The layout of the proposed method. The main part of the structure is the CNNs architecture similar to AlexNet. And it is equipped with a simple LBP
operation preprocessing in front of the first convolutional layer. The CNNs architecture is composed of 3 convolutional layers and 3 fully connected layers. A color
image is coded to LBP map by the LBP coding operation firstly and then fed into CNNs. Convolutional layers calculate the convolutions of the LBP maps and do Batch
Normalization operation of the results before they are fed into activation function ReLU. Finally, the activation results are processed by a max pooling layer and go
to the next layer. According to the feature maps extracted by the convolutional layers, the fully connected layers can complete the classification task.

2.1. LBP coding operation

Local binary pattern, which was firstly proposed by Ojala [26] in
1996, is a simple but efficient texture operator at the beginning. It labels
the pixels of an image by thresholding the neighborhood of each pixel
and considers the result as a binary number. According to [27], the LBP
value of pixel (𝑥𝑐 , 𝑦𝑐) is given by:

𝐿𝐵𝑃𝑃 ,𝑅 =
𝑃−1
∑

𝑝=0
𝑠(𝑔𝑝 − 𝑔𝑐 )2𝑝 (1)

where

𝑠(𝑥) =
{

1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

where 𝑅 denotes the radius of a circularly symmetric neighborhood used
for LBP calculation, and 𝑃 denotes the number of the samples around
the circle. The gray levels of the center pixel and its neighbor pixels are
represented as 𝑔𝑐 and 𝑔𝑝, respectively.

In [10], an approach for camera model identification using local
binary patterns is proposed and achieved excellent performance. How-
ever, the 354-dimensional features are selected from 1536-dimensional
LBP features of three different transformation domains and two color
channels of the given image, which is a sophisticated and time-
consuming procedure. Considering that CNNs is a good feature extractor
and classifier, the LBP map of an image is likely to be a good hint
for CNNs because the features based on LBP are efficient for camera
model identification. It is noteworthy that LBP operation suppresses the
interference caused by the contents of the image and forces the CNNs to
focus more on intrinsic characteristics of the query image rather than the
contents or other primary vision information. Therefore, a LBP operator,
whose parameters are acquiescently set as 𝑅=1 and 𝑃=8, is adopted
to compute the LBP maps of a color image according to Eqs. (1) and (2),
inspired by the algorithm in [10]. It is worth noting that the LBP maps of
an image are computed in three color channels independently and then
are fed into CNNs as inputs. An example for the LBP value computing
process of a pixel from one channel is illustrated in Fig. 3.

2.2. The CNNs architecture

In order to satisfy the demand of camera model identification, we
modify a CNNs architecture which resembles to AlexNet. Fig. 4 reports
the characteristics and parameters of the CNNs architecture that we use.

2.2.1. Convolutional layers
Generally, a convolutional layer contains four sub-layers: convolu-

tion, activation function, pooling and normalization. The convolution
can be calculated by the following formula:

𝑎𝑙𝑗 =
𝑛
∑

𝑖=1
𝑎𝑙−1𝑖 ∗ 𝑤𝑙−1

𝑖,𝑗 + 𝑏𝑙𝑗 (3)

where ∗ denotes convolution and 𝑛 is the number of feature maps of
layer 𝑙-1. 𝑎𝑙𝑗 denotes the 𝑗th output map of layer 𝑙 and it is used to execute
convolution with the convolution kernel. 𝑤𝑙−1

𝑖,𝑗 , as the convolution
kernel, connects the 𝑖th output of layer 𝑙-1 and the 𝑗th input of layer
𝑙. As for 𝑏𝑙𝑗 , it is the bias parameter for the 𝑗th output map of layer 𝑙.

Then the activation function acts on each value of the last layer’s
output map. Among several kinds of activation functions (e.g. 𝑡𝑎𝑛ℎ(𝑥),
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), etc.), Rectified Linear Units (ReLU) function [28] is the most
popular one and it can be represented as follows:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4)

where 𝑥 is the activation value of ReLU.
According to the results in [15], the CNNs equipped with the non-

saturating nonlinearity ReLU can be trained much faster than those with
tanh units or other saturating nonlinearities.

Pooling [29] layers in CNNs are usually comprised to summarize the
joint distribution of neighboring groups of neurons, reduce the resolu-
tion of feature maps and even slightly reduce over-fitting. Experiments
in [15,22] have proved that the influence of pooling layers after the
output maps of neurons is significant. Hence, we apply overlap max
pooling layers after activation functions of convolution layers.

Local response normalization (LRN) [15] is commonly applied after
the ReLU nonlinearity in certain convolutional layers of AlexNet. How-
ever, we introduce batch normalization (BN) [30] in our networks. It is
not only because BN is more promising in the latest artificial intelligence
tasks but also we have some considerations which will be expressed
particularly in the next sub-section.

2.2.2. Batch normalization
Internal covariate shift (ICS) [30], which refers to that the distri-

butions of the inputs of hidden layers are always changing along with
the variation of network parameters during the training process, has
a negative impact on model training process and convergence. Batch
normalization inspired by whitening activations is an efficient technique
to address ICS issue and beneficial to CNN training. The core idea
of batch normalization is to ensure that the network always produce
activations with desired distribution which is Gaussian distribution in
general. Let x be an input of a layer, treated as a feature map, and 𝜒 be
the set of these input over the training data set. The normalization can
be written as a transformation

x̂ = 𝑁𝑜𝑟𝑚(x, 𝜒) (5)

As for a mini-batch input 𝐵 of size 𝑚: 𝐵 = (𝑥1, 𝑥2,… 𝑥𝑚), the
normalization of each dimension is:

𝑥𝑖 =
𝑥𝑖 − 𝐸[𝑥𝑖]
√

𝑉 𝑎𝑟[𝑥𝑖]
(6)

where the expectation and variance are computed over a mini-batch of
the training data set.
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Fig. 3. An example for the LBP value computing process of a pixel. (a)The pixel values of an image neighborhoods. (b) The result after thresholding the neighborhood
of each pixel. (c) The weight of each position. (d) Consider the results as binary numbers. (e) The LBP value result of the pixel in the middle.

Then a pair of parameters 𝛾, 𝛽 are introduced for each activation 𝑥𝑖
to scale and shift the normalized value:

𝑦𝑖=𝛾𝑥𝑖+𝛽 (7)

The parameters 𝛾, 𝛽 can be learned and adjusted as other parameters
during the training process.

Through batch normalization, the input distribution of each hidden
layers’ neuron which may move to saturated region of some nonlineari-
ties gradually is forced to come back to standard Gaussian distribution so
that the activations can fall into the sensitive region of the nonlinearity
and then the gradient vanishing problem can be avoided as a result [30].

In our model, batch normalization is performed after each convolu-
tion for the following three reasons:

(i) BN prevents the training process from falling into local minima
and over-fitting, and helps the networks find optimal scales and biases
for feature maps [31].

(ii) BN acts as a regularizer and accelerates the training process
which refers to higher convergence speed and lower final error rate.

(iii) BN makes the networks more tolerant to the network parameters
and yield in models with better generalization ability, which means we
can be less careful about initialization.

2.2.3. Classification layers
The classification layers are composed of three fully connected layers

and a softmax function which is replaced by softmaxloss function in
training stage. Like AlexNet, the first two fully connected layers have
256 and 4096 neurons respectively. Their outputs are both followed by a
ReLU activation function. Then the generated feature maps are dropped
out at the rate of 0.5 only during the training process. The output maps
of the last fully connected layer are fed to a softmax function to compute
the class scores, which is the last step for CNNs to convert an original
image into possibility of classes.

2.2.4. Implementation details
We modify the CNNs architecture similar to AlexNet with batch

normalization layer between convolution and activation unit layer.
Therefore, the original normalization layers LRN are removed but the
dropout [32] layers for fully connected layers are kept.

The CNNs proposed in this paper are implemented in MatCon-
vNet [33] toolbox with a single GPU card of type GeTorce GTX980
and the model is trained for 100 epochs on our image dataset from
‘‘Dresden Image Database’’ [34]. The images from the database are of
similar scenes but captured by multiple camera models with multiple

devices. Before any further manipulation, the dataset is divided into
training and testing set which consisted of 80% and 20% of the samples
respectively, and 20% of training samples are randomly selected to form
the validation set. Then all the images in these three sets are cropped
into 256 × 256 pixel square patches without overlapping and those
less than 256 × 256 are ignored. The patches share the same label if
they are different parts of one image and they does not experience any
kind of color, scale, rotation or aspect ratio augmentation except mean
subtraction. Note that the division of training, validation and testing
set is done at whole image level in order to avoid the situation that
the patches form the same image appear either in training, validation
and testing set. Since the results are averaged after running the whole
experiment procedure for 5 times, the random split is repeated for 5
times. Before fed into the CNNs, all the patches are transformed into LBP
maps by LBP coding operation and then be zero-centered by subtracting
the mean of LBP maps of the training set.

We apply mini-batch stochastic gradient descent (SGD) to train our
model. A mini-batch size of 100 and the initial learning rate of 0.05 is
used. The momentum is fixed to 0.9. The weight-decay is initialized as
0.0005. The parameters in convolution kernels are initialized by random
numbers generated from zero-mean Gaussian distribution with standard
deviation of 0.01.

The key parameters follow the following decay rule over time: we
validate the performance of the trained model every epoch using valida-
tion set. If the accuracy of the current validated model is not higher than
that of last two validated models, the learning rate would be divided by
2. As a result, we are relieved from manually changing the parameters
and the final model could be trained more efficiently until full training
process completed and its performance can be better than that of the
former validated ones, or not worse at least. So please note, we did not
interfere with the training and optimization process of our model after
the parameters are initialized and the adjustment policies of parameters
are set. Especially, the learning rate is changed automatically under the
policy rather than under our subjective supervision.

3. Experimental results and discussion

In this section, we conduct two different experiments to evaluate
our proposed method and also provide the results of state-of-the-art
classical method [14] and CNN-based method [22] for comparison. We
use images from well-known ‘‘Dresden Image Database’’ and cut them
into patches as described above. As for the images from various devices
of the same model, we only focus on their source camera model and mix
them together so that we are able to obtain a relatively larger amount
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Fig. 4. Characteristics and Parameters of our CNNs.

of samples, and that is crucial for CNNs training process. The detailed
image lists used in our experiments are shown in Table 1 and some image
patches used in the experiments are shown in Fig. 5.

3.1. Experiment 1

Experiment 1 uses the first 12 camera models listed in Table 1. Each
patch in our training set is firstly coded based on LBP coding rule as
Eqs. (1) and (2), which have been explained in the first subsection of
Section 2 . Then the coded images are fed into our CNNs architecture to
train the model which is denoted as LBP-CNN. Finally, we use it to match
the patches in testing set with their source camera model and calculate
the accuracy of this identification process. For a fair comparison, we also
train a identification model denoted as EDF (ensemble of demosaicing
features) using the method proposed in [14] and report the identifica-
tion results. Note that the camera models in our experiments are exactly

the same with [22] except that we use multiple devices of each model
when it is available, and this is a stricter setting than [22] because the
training and test samples of the same model in [22] are all form the
same device. So it is reasonable to directly reuse the experimental results
reported in [22] as a baseline and we denote it as H-CNN.

The classification results of each model of experiment 1 are reported
in Table 2. Compared with the accuracy of 94.93% and 98.00% achieved
by EDF and H-CNN, LBP-CNN shows an average accuracy of 98.78%,
gaining an obvious improvement of 3.85% and 0.78% compared with
the baseline. From Fig. 6, we can clearly see that in 8 cases of all 12
camera models, the identification accuracies are higher than H-CNN
especially for Praktica DCZ5.9, and the performance of the proposed
method outperforms both H-CNN and EDF, which means the proposed
method is better form an overall perspective. For Praktica DCZ5.9, LBP-
CNN achieves an accuracy of 99.18% while 90.44% of H-CNN, which is
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Fig. 5. Some image patches used in the experiments.

Fig. 6. The identification accuracies of each model in experiment 1.

Table 1
The dataset of camera models from mixed brands. The number of each model
corresponds to that of results table.

Seq Brand Model Train Validation Test

1 Agfa Photo DC733s 18 922 4 730 5 832
2 Agfa Photo DC830i 24 711 6 177 7 668
3 Agfa Photo Sensor530s 32 000 8 000 10 000
4 Canon Ixus55 9 688 2 422 3 010
5 Fujifilm FinePix-J50 32 000 8 000 10 000
6 Kodak M1063 32 000 8 000 10 000
7 Nikon D200 32 000 8 000 10 000
8 Olympus M1050SW 32 000 8 000 10 000
9 Panasonic DMC-FZ50 32 000 8 000 10 000

10 Praktica DCZ5.9 32 000 8 000 10 000
11 Samsung L74wide 32 000 8 000 10 000
12 Samsung NV15 32 000 8 000 10 000
13 Sony DSC-H50 32 000 8 000 10 000
14 Sony DSC-W170 32 000 8 000 10 000

Total 388 291 101 329 126 510

a significant improvement of 8.74%. The least identification accuracy of
LBP-CNN is 94.74% recorded by Agfa DC733s while the least accuracy
of H-CNN and EDF is 90.44% and 91.92%. There is a clear gap compared
with our proposed method. On the other hand, except for Agfa DC733s
and Canon Ixus55, the identification accuracies of the left 10 models are
all higher than 98%, which is quite encouraging. However, in compared
method, there are 6 cases whose identification accuracy is lower than
98%, and this is another proof which illustrates the superiority of the
proposed method.

Table 2
The identification accuracies of each model in experiment 1.

Model EDF H-CNN LBP-CNN

Agfa Photo DC733s 94.22% 96.5% 94.74%
Agfa Photo DC830i 94.68% 94.5% 98.15%
Agfa Photo Sensor530s 94.55% 99.57% 98.81%
Canon Ixus55 99.47% 98.54% 97.51%
Fujifilm FinePix-J50 97.16% 98.17% 99.40%
Kodak M1063 96.65% 99.89% 99.75%
Nikon D200 94.76% 97.83% 99.46%
Olympus M1050 94.61% 96.38% 98.72%
Panasonic DMC-FZ50 92.83% 98.46% 99.77%
Praktica DCZ5.9 97.24% 90.44% 99.18%
Samsung L74wide 93.88% 98.13% 98.78%
Samsung NV15 91.92% 96.73% 98.40%

Ave. 94.93% 98.00% 98.78%

Table 3
Average identification accuracy of each method in experiment 2.

Method EDF H-CNN LBP-CN

Ave. 89.12% 97.09% 97.41%

3.2. Experiment 2

The experiment is re-performed on the images from all the 14
camera models listed in Table 1 by adding two camera models Sony
DSC-H50 and Sony DSC-W170. It is clearly depicted in Table 3 that
the proposed method shows an average accuracy of 97.41%, which is
still higher than 97.09% of H-CNN and 89.12% of EDF respectively.
The detailed confusion matrix of identification results of LBP-CNN is
shown in Table 4. From the confusion matrix, we can see that the
highest identification accuracy is 99.85% recorded by Fujifilm FinePix-
J50, whereas the lowest identification accuracy is 85.30% recorded by
Sony DSC-W170. Except for Sony DSC-H50 and Sony DSC-W170, the
identification accuracy of the rest 12 models are all higher than 99%,
which proves the effectiveness of the proposed method.

As we can see form Table 4, the decrease of average identification
accuracy compared with experiment 1 is mainly caused by the two
newly added camera models Sony DSC-H50 and Sony DSC-W170. The
identification accuracy of Sony DSC-H50 and Sony DSC-W170 in this
experiment is 85.53% and 85.30% respectively, much lower than the
averaged identification accuracy. And they are always misclassified into
the other class. We also find the similar phenomena in the result of
EDF. The cause of this phenomena is that it is difficult to distinguish the
images from models of the same brand especially when these models
share strong similarity of features [35]. Moreover, in [10], it is reported
that LBP is slightly less reliable to identify those two Sony models. This
may be the most important reason for the unsatisfactory identification
results of Sony DSC-H50 and Sony DSC-W170 in Table 4, because we
use the LBP coding as the preprocessing operation of the input images.
In spite of this, the average identification accuracy of this method is still
the highest among the three methods, which also proves the effective
and superiority of the proposed method.

4. Conclusion

In this paper, we investigate a promising approach based on convo-
lutional neural networks with local binary patterns for source camera
model identification, which achieves better performance compared to
the-state-of-art methods tested on the same dataset. In particular, the
LBP coding operation exerts a significant effect on promoting the perfor-
mance and it indicates that a well-designed CNNs structure with smart
preprocessing hint can be an excellent tool for image forensics problems
especially for camera identification. In the future, it is prospective for
deep learning approaches to perform much better than the classical
methods through more careful CNNs structure designing especially the
preprocessing hint and better parameter tuning. And we will attempt to
investigate smarter hints for CNNs continuously.
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Table 4
Confusion matrix of experiment 2 (%). The total accuracy is 94.97%, – means zero or less than 0.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Agfa Photo DC733s 99.07 0.34 – – – – – – – 0.27 0.14 – – –
Agfa Photo DC830i 0.17 99.62 – – – – – – – – – – – –
Agfa Photo Sensor530s – – 99.63 – – 0.13 0.14 – – – – – – –
Canon Ixus55 – – – 99.70 – – – – – 0.17 – – – –
Fujifilm FinePix-J50 – – – – 99.82 – – – – – – – – –
Kodak M1063 – – – – – 99.85 – – – – – – – –
Nikon D200 – – – – – – 99.84 – – – – – – –
Olympus M1050 – – – – – 0.17 – 99.64 – – – – – –
Panasonic DMC-FZ50 – – – – – – – – 99.78 – – – – –
Praktica DCZ5.9 – – – 0.12 – – – – – 99.65 – – – –
Samsung L74wide – – – – – – – – – 0.12 99.71 – – –
Samsung NV15 0.11 – – – – 0.20 0.10 – – – – 99.43 – –
Sony DSC-H50 – – – – – 0.12 – – – – – – 85.53 14.26
Sony DSC-W170 – – – – – 0.12 – – – – – – 14.39 85.30
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