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A B S T R A C T

While the misuse of Deepfake technology is drawing growing concern in the literature of information security,
related forgery detection has become a significant challenge in practical applications. Most state-of-the-
art detection methods achieve satisfactory results on raw images, but their performance drops significantly
on processed images (e.g. compression). In this work, we propose a novel Deepfake detection method
that integrates spatial and frequency domain information within a knowledge distillation framework for
efficient forgery detection. Our method consists of two steps: (1) spatial-frequency fusion, and (2) multi-
knowledge distillation. We first extract frequency-domain and spatial-domain features, then fuse them and
utilize them in attention-based guidance to improve the classification results. Note that the spatial-frequency
fusion serves as the basis for both the teacher and student models with spatial-frequency features and logits
transferred as knowledge. We conducted comprehensive experiments on several benchmark datasets which
successfully demonstrate the excellent generalization performance of our method on compressed images while
outperforming state-of-the-art techniques.
1. Introduction

With the significant improvement in computer performance and the
rapid development of data mining and machine learning technologies,
artificial intelligence is widely applied in many fields. However, despite
enriching daily life, the development of technology has also brought
some potential risks (Okey et al., 2022; Guo et al., 2023; Chi et al.,
2022). Since its inception in 2018, Deepfake has advanced from ama-
teur experimentation to a potentially malicious tool for facial feature
manipulation. While Deep Learning (DL) advances, Deepfakes are also
growing increasingly realistic. Besides, commercial applications such
as ZAO, etc. are designed to be user-friendly such that the learning
cost for individuals to use Deepfakes has dropped significantly. And
this is followed by various malicious applications of Deepfake. During
the Russian–Ukrainian conflict, a video featuring Ukrainian President
Volodymyr Zelensky calling on Ukrainian soldiers to lay down their
arms circulated widely. However, it was later confirmed that the video
was a Deepfake and a mere rumor. This incident indicates that Deep-
fakes have been used in cognitive warfare. Additionally, Deepfake
porn is one of malicious applications. According to a report by Wired
magazine, every month thousands of people use DeepNude to create
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nude images of their friends and family, some of whom are under
18 years old. Therefore, it is urgent to design efficient and accurate
methods to detect these Deepfakes.

Early approaches to Deepfake detection (Haliassos et al., 2021; Jung
et al., 2020; Ciftci et al., 2020; Agarwal et al., 2020) are mostly based
on handcrafted features such as heartbeat, blink, and lip shape, and
use classifiers such as Support Vector Machine (SVM) and Random
Forest (RF) for testing. However, handcrafted features primarily focus
on sensitive facial information and may not be appropriate for all
datasets, resulting in failures when the source of the data changes. To
address these limitations, current research is heavily focused on Deep
Learning methods (Gu et al., 2022; Sun et al., 2022; Dong et al., 2022).

Existing deep-feature-based methods typically perform well on high-
quality images, but their performance deteriorates when testing on
compressed images. This is because certain artifacts that could be used
as detection cues in the fake image are weakened or removed during the
compression process. Additionally, these models often extract features
that are limited in scope, capturing either spatial or frequency domain
information. This narrow focus can lead to overfitting, resulting in poor
model generalization ability.
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Based on the above observations, we suggest that two factors should
be considered when detecting compressed images: (1) restoring net-
work attention to artifacts that may have been weakened during the
compression process, and (2) making comprehensive use of information
from both spatial and frequency domains. To address these challenges,
we propose a Deepfake detection method that uses spatial-frequency
fusion features and knowledge distillation.

Our approach begins with the introduction of a single branch called
the Spatial-Frequency Fusion Branch (SFFB). This branch extracts spa-
tial and frequency domain features from the input image and fuses
them under attention guidance. In contrast to traditional knowledge
distillation, our method employs the same structure for both the teacher
and student models, with both models adopting the SFFB. Following
the setup in ADD (Woo et al., 2022), we train the student model using
paired input images of compressed and raw images while training the
teacher model using only raw images. During the knowledge distilla-
tion process, the teacher model transfers both spatial and frequency
domain features, as well as logits, to the student model, enhancing the
network’s attention to detect weakened artifacts.

It is worth noting that ADD also employed a knowledge distillation
structure with paired inputs and achieved impressive results. However,
unlike ADD, which requires paired data for training, our approach has
the advantage of being able to achieve competitive results with a single
input, making our model more flexible. In addition, we incorporate soft
targets output from the teacher model to supervise the student model
during knowledge distillation, enhancing the student model’s ability to
learn the teacher model comprehensively.

The contributions of this paper could be summarized as three-fold:

∙ We propose a Spatial-Frequency Fusion Branch (SFFB), the frame-
work of which is simple and easy to implement. SFFB can achieve
competitive results even when used independently.

∙ We apply knowledge distillation to deepfake detection. In the
training process, we utilize spatial features, frequency domain
features and logits for multi-knowledge transfer.

∙ Extensive visualizations and experiments demonstrate that our
framework outperforms well-known baselines on the public
datasets.

2. Related work

Over time, various techniques have been developed to detect Deep-
fakes, and the use of spatial and frequency domain features has proven
to be a popular approach.

Spatial domain based Deepfake detection. This approach was
revalent in early works. In Afchar et al. (2018), Chollet (2017), Tan
nd Le (2019) and He et al. (2016), RGB images are used as input
nd deep features are extracted, leading to promising results on public
eepfake datasets. These models are now commonly used as backbone
etworks, contributing significantly to subsequent works. Recently,
ransformer (Vaswani et al., 2017) has become a hit in computer
ision. Studies (Liang et al., 2023; Anas Raza et al., 2023; Ilyas et al.,
023) have shown that applying transformer in the field of deepfake
etection can also achieve great performance. Wang et al. (2022),
iu et al. (2020) and Yu et al. (2019) extract artifact features like
olor cues, GAN fingerprints, and textures. In Shiohara and Yamasaki
2022) and Zhao et al. (2021), the authors propose methods to improve
he testing accuracy of the detection model by designing the training
ata. Recently, disentanglement has gained significant attention in the
ield of Deepfake detection (Yan et al., 2023; Liang et al., 2022). By
eparating irrelevant information, the model’s generalization ability is
urther improved. These methods perform well on raw or high-quality
mages. However, since they only focus on the information extracted
rom the spatial domain, their performance can be affected by high
ompression.
Frequency domain based Deepfake detection. In recent years,

esearchers have focused on solving the generalization problem and
2

xtracting frequency domain information. For example, Jia et al. (2021)
rained a two-branch network based on Stationary Wavelet Decomposi-
ion (SWD) to extract inter-image and intra-image inconsistencies. Qian
t al. (2020) proposed the Frequency in Face Forgery Network (F3-Net)
hat applies Discrete Cosine Transform (DCT) as the frequency-domain
ransformation. F3-Net uses complementary frequency-aware clues to
chieve better performance in detecting low-quality forgeries. Frank
t al. (2020) leveraged 2D-DCT to extract frequency domain informa-
ion and efficiently detect GAN-generated images. These methods have
hown that frequency domain information can provide complementary
nd useful clues for Deepfake detection. There is still further room for
mprovement in the performance of these methods because they only
tilize information from single frequency domain.
Spatial-frequency fusion based Deepfake detection. To capture

ore comprehensive information, researchers have started to fuse spa-
ial and frequency domain features. Liu et al. (2021) proposed a shallow
etwork that combines spatial images and phase spectrum to capture
p-sampling artifacts. Li et al. (2021) introduced a novel loss called
he single-center loss to improve intra-class compaction and inter-class
eparability. They also designed an RGB-frequency fusion module, and
he effectiveness of fusion has been demonstrated in ablation studies.
uo et al. (2021) fused high-frequency features extracted by SRM
ith spatial features, and their detection model achieved admirable

esults in cross-dataset evaluation. Gu et al. (2022) proposed a two-
ranch Deepfake detection network with enhancement learning for
ine-grained feature extraction in the spatial and frequency domains.
iang et al. (2023) designed a two-stream framework which incorpo-
ates a spatial stream and a frequency stream, and a combination of
oarse and fine classification was used to detect the Deepfakes. Shuai
t al. (2023) proposed an innovative two-stream network and three
unctional modules to enlarge the potential regions from which the
odel extracted forgery evidence.
Knowledge Distillation. Knowledge distillation (KD) is a model

ompression technique that aims to derive small yet highly accurate
etworks from larger ones. It has recently been widely used in computer
ision applications such as object detection (Zhang and Ma, 2021),
emantic segmentation (Liu et al., 2019), and Deepfake detection (Woo
t al., 2022; Kim et al., 2021; Xu et al., 2023). In our work, unlike
raditional knowledge distillation, our goal is not model compression.

e employ the same spatial-frequency fusion branch for both the
eacher and student models, but the inputs of the two models are raw
nd compressed images, respectively. This setup allows the student
odel to focus on the weakened artifacts caused by compression.

Unlike methods that solely utilize features from one domain, our
pproach combines the strengths of both spatial and frequency domain,
esulting in a more comprehensive and robust feature space. Compared
ith other spatial-frequency fusion based Deepfake detection methods,
ur method introduces knowledge distillation, extensively exploring
he forged clues in uncompressed images while other models neglect
he correlation between the original and compressed images. Multi-
nowledge distillation enables our model to accurately locate forgery
egions within compressed images while minimizing interference from
on-forgery areas.

. The proposed method

.1. Overview

Aiming at solving the problems of previous methods in perfor-
ance degradation with compressed Deepfake images, we propose a
ovel Deepfake detection method that integrates spatial and frequency
omain information within a knowledge distillation framework. As
llustrated in Fig. 1, knowledge distillation is applied as the overar-
hing backbone of our framework. Both the teacher model and the
tudent model employ the same SFFB structure, which extracts features
rom the spatial domain and frequency domain and fuses the features
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Fig. 1. The pipeline of our proposed method. Both the teacher model and the student model adopt the same SFFB structure, as shown in Fig. 2. The teacher model has been
pretrained using the raw images. During the training phase, the teacher model takes the original image as input, while the student model takes the compressed image as input.
In the knowledge distillation process, the feature maps of the spatial and frequency domains and soft target are transferred as knowledge to the student model.
through a fusion module. It is worth noting that the inputs of teacher
model and student model are different, raw images for the teacher
model, compressed images for the student model. In the knowledge
distillation process, the feature maps of the spatial and frequency do-
mains are transferred as knowledge to the student model. Furthermore,
after going through the fusion module and convolution layers, logits are
obtained, which are also transferred as knowledge.

3.2. Spatial-Frequency Fusion Branch

In order to obtain comprehensive features to improve the general-
ization ability of the network, we develop a Spatial-Frequency Fusion
Branch (SFFB), as shown in Fig. 2. Our SFFB consists of four parts: data
preprocessing module, feature extraction module, fusion module and
classification module.

Data preprocessing. Overfitting is one of the causes of poor model
generalization performance. To avoid overfitting, we first perform data
augmentation on RGB images, including image flipping, grayscale,
color jittering and so on. The images after data augmentation are used
as input to the spatial stream directly. We denote the RGB image as
𝐼𝑠∕𝑡𝑠 (superscript: 𝑠 for student, 𝑡 for teacher). For frequency information
mining, 2D-DCT is applied to the image. Then the frequency domain
image is going through three filters for different bands (low frequency,
medium frequency and high frequency). Finally, the image is recon-
stituted by the DCT inverse transformation. The process of frequency
domain conversion can be formulated as:

𝐼𝑠∕𝑡𝑓 𝑖 = 𝑓𝑖
(

𝐷𝐶𝑇
(

𝐼𝑠∕𝑡𝑠

))

, (1)

𝐼𝑠∕𝑡𝑓 = 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝐷𝐶𝑇 −1
(

𝐼𝑠∕𝑡𝑓 𝑖

))

, (2)

where 𝑓𝑖 (⋅) denotes the filter, 𝐼𝑠∕𝑡𝑓 𝑖 denotes the single image after the
filter, 𝑐𝑜𝑛𝑐𝑎𝑡 (⋅) denotes that concatenation along the channel direction,
and 𝐼𝑠∕𝑡𝑓 is the final frequency domain input.

Feature extraction module. Then 𝐼𝑠∕𝑡𝑓 and 𝐼𝑠∕𝑡𝑠 are fed into the
feature extraction module. After that, frequency feature map 𝑀𝑠∕𝑡

𝑓
and spatial map 𝑀𝑠∕𝑡

𝑠 are obtained. We choose the entry and middle
flow of Xception (Chollet, 2017) as the backbone network for feature
3

extraction. It is worth noting that the weights of the spatial stream and
frequency stream are not shared.

Fusion module. Then the obtained spatial and frequency domain
feature maps are going through the fusion module. The fusion module is
inspired by SKAttention (Li et al., 2019), which consists of three parts:
split, fuse and select. As illustrated in Fig. 3, different from SKAttention,
the ‘‘split’’ part is replaced with the obtained spatial and frequency
maps in our fusion module. Specifically, we first apply element-wise
summation to the two feature maps and obtain the mixed feature map
𝑀𝑠∕𝑡

𝑚 :

𝑀𝑠∕𝑡
𝑚 = 𝑀𝑠∕𝑡

𝑓 +𝑀𝑠∕𝑡
𝑠 , (3)

the purpose of which is to mix information from different domains.
Furthermore, because both streams have the same structure except the
data preprocessing module, for each feature map of different domains,
the features at the same position are correlated, which means that the
element-wise summation will not disturb the original feature arrange-
ment. Then do the channel reduction, which consists of two steps. First
step is global average pooling (GAP) (Lin et al., 2013), and this step
can be formulated as:

𝐴𝑠∕𝑡
𝑟1 = 𝑐𝑜𝑛𝑐𝑎𝑡

(

1
|𝑅|

∑

(𝑝,𝑞)∈𝑅
𝑥𝑠∕𝑡𝑘𝑝𝑞

)

, 𝑘 = 1, 2,… , 𝑛, (4)

where 𝑥𝑠∕𝑡𝑘𝑝𝑞 denotes the element at (𝑝, 𝑞) in the 𝑘th feature map of
𝑀𝑠∕𝑡

𝑚 , 𝑛 denotes the number of feature maps for 𝑀𝑠∕𝑡
𝑚 , |𝑅| denotes the

elements number of the feature map, and 𝐴𝑠∕𝑡
𝑟1 denotes the output after

GAP. Secondly, a fully connected layer is followed:

𝐴𝑠∕𝑡
𝑟2 = 𝑓𝑐

(

𝐴𝑠∕𝑡
𝑟1

)

, (5)

where 𝑓𝑐 (⋅) denotes the fully connected operation. This step allows
information between different channels to interact. To match the size
of input feature maps, another two fully connected layer (𝑓𝑐1 (⋅) and
𝑓𝑐2 (⋅)) are applied to 𝐴𝑟2 and the corresponding features are element-
wise multiplied with the spatial feature map and frequency map respec-
tively, 𝐴𝑠∕𝑡

𝑓 and 𝐴𝑠∕𝑡
𝑠 obtained as:

𝐴𝑠∕𝑡
𝑓 = 𝑓𝑐1

(

𝐴𝑠∕𝑡
𝑟2

)

⊗𝑀𝑠∕𝑡
𝑓 +𝑀𝑠∕𝑡

𝑓 , (6)

𝐴𝑠∕𝑡 = 𝑓𝑐
(

𝐴𝑠∕𝑡
)

⊗𝑀𝑠∕𝑡 +𝑀𝑠∕𝑡, (7)
𝑠 2 𝑟2 𝑠 𝑠
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Fig. 2. Illustration of our Spatial-Frequency Fusion Branch (SFFB). SFFB consists of four parts: data preprocessing module, feature extraction module, fusion module and classification
module. The spatial and frequency domain features from fusion module, as well as the soft target from the classification module, are transferred as knowledge.
Fig. 3. Illustration of the fusion module. The fusion module consists of fusion, selection and concatenation.
Different from SKAttention, we add element-wise summation of
the element-wise product results with corresponding original feature
map to enhance the effect of the fusion. Then, we concatenate the
features from the two domains in the direction of channel and a 1 × 1
convolution layer is applied to fuse the features, and the fused feature
𝑀𝑠∕𝑡

𝑚1
for classification is obtained as:

𝑀𝑠∕𝑡
𝑚1

= 𝑐𝑜𝑛𝑣
(

𝑐𝑜𝑛𝑐𝑎𝑡
(

𝐴𝑠∕𝑡
𝑓 , 𝐴𝑠∕𝑡

𝑠

))

, (8)

where 𝑐𝑜𝑛𝑣 (⋅) denotes the 1 × 1 convolution.
Classification. Finally, we choose the exit flow of Xception for clas-

sification. The SFFB branch can be trained independently for Deepfake
detection, and we present its performance in Sections 4.2 and 4.3.

3.3. Knowledge distillation for SFFB

The framework of our knowledge distillation is shown in Fig. 1.
Compared to traditional knowledge distillation, our model differs in
three ways: (1) input, (2) the size of the models, and (3) knowledge.
First, the teacher model is pre-trained on raw images. In the training
stage of the student model, the input of the teacher model is raw
image and the model weights are fixed. For the student model, in-
put is the corresponding compressed image. However, in traditional
knowledge distillation, the input of the teacher model and the stu-
dent model is the same. Further, different from traditional knowledge
distillation which aims to perform model compression, in our work,
both the teacher model and the student model adopt the same SFFB
structure, because we focus on the knowledge transfer between raw
images and compressed images. Knowledge is usually divided into
three types: response-based knowledge, relation-based knowledge and
feature-based knowledge. We not only make the student model imitate
the final predictions of the teacher model, but also let the student
model learn the feature representations of the teacher model, so we
adopt both response-based knowledge and feature-based knowledge
simultaneously.
4

We select the spatial and frequency domain feature maps before the
fusion module as feature-based knowledge which is supervised by Mean
Square Error (MSE). The loss here can be formulated as:

𝐿𝑓 = 1
|𝑅|

|𝑅|
∑

𝑖=1

(

𝑀𝑠
𝑓𝑖 −𝑀 𝑡

𝑓 𝑖

)2
, (9)

𝐿𝑠 =
1
|𝑅|

|𝑅|
∑

𝑖=1

(

𝑀𝑠
𝑠𝑖 −𝑀 𝑡

𝑠𝑖
)2. (10)

The KD loss for response-based knowledge can be formulated as:

𝐿𝑠𝑜𝑓𝑡 = −
𝑁
∑

𝑖
𝑥𝑇𝑖 log

(

𝑦𝑇𝑖
)

, (11)

where 𝑥𝑇𝑖 refers to the value of the softmax output of the teacher model
on class 𝑖 when temperature parameter is 𝑇 , and 𝑦𝑇𝑖 refers to the value
of the softmax output of the student model. 𝑥𝑇𝑖 and 𝑦𝑇𝑖 are obtained as:

𝑥𝑇𝑖 = 𝑒𝑣𝑖∕𝑇
∑𝑁

𝑘 𝑒𝑣𝑘∕𝑇
, (12)

𝑦𝑇𝑖 = 𝑒𝑧𝑖∕𝑇
∑𝑁

𝑘 𝑒𝑧𝑘∕𝑇
, (13)

where 𝑣𝑖 is the logit of the teacher model, 𝑧𝑖 is the logit of the student
model, and 𝑁 refers to the total number of labels. Additionally, we
adopt the widely-used Cross-Entropy loss for ground truth supervision:

𝐿ℎ𝑎𝑟𝑑 = −
𝑁
∑

𝑖
𝑐𝑖 log

(

𝑦1𝑖
)

, (14)

where 𝑐𝑖 refers to the ground truth label on class 𝑖, 𝑐𝑖 ∈ {0, 1}, and 𝑦1𝑖
denotes the prediction of the student model. The purpose of hard loss
is to reduce the possibility of errors being propagated to the student
model, as the teacher model also has a certain error rate, and using
ground truth can effectively lower the chance of errors being passed
on. The total loss is written as:

𝐿 = 𝜆
(

𝐿 + 𝐿
)

+ 𝜆 𝐿 + 𝜆 𝐿 , (15)
𝑡𝑜𝑡𝑎𝑙 1 𝑓 𝑠 2 𝑠𝑜𝑓𝑡 3 ℎ𝑎𝑟𝑑
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Table 1
The ACC results of our proposed method on FF++ dataset (compressed).

Methods c23 c40

DF FS F2F NT DF FS F2F NT

Steg.Features (Fridrich and Kodovsky, 2012) 77.12 79.51 74.68 76.94 65.58 60.58 57.55 60.69
Cozzolino et al. (2018) 81.07 82.25 79.26 80.38 70.17 62.22 60.90 63.24
F3-Net (Qian et al., 2020) 96.26 97.85 95.52 77.91 93.06 92.49 81.48 61.95
MesoNet (Afchar et al., 2018) 89.77 95.50 94.25 78.70 77.68 79.92 83.65 77.74
Xception (Chollet, 2017) 95.15 95.96 97.07 87.99 83.70 83.17 87.21 87.90
ResNet50 (He et al., 2016) 96.34 92.46 95.60 86.25 92.89 88.91 83.94 60.27
EfficientNetV2 (Tan and Le, 2021) 88.44 90.22 90.00 85.49 79.62 71.74 71.88 84.11
ConvNeXt (Liu et al., 2022) 91.99 90.97 92.01 88.25 82.21 79.70 72.72 87.70
ADD (Woo et al., 2022) 98.67 97.85 96.82 88.48 95.50 92.49 85.42 68.53

Ours-SFFB 97.46 97.65 94.33 95.31 88.90 82.73 83.45 98.13
Ours-SFFB&KD 98.87 98.57 98.58 96.84 92.00 89.22 85.63 98.36
Table 2
Experimental results of SFFB on FF++ dataset (raw) and Celeb-DF dataset.

Methods DF FS F2F NT Celeb-DF

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

D-CNN (Rahmouni et al., 2017) 98.03 – 98.94 – 98.96 – 96.06 – – –
MesoNet (Afchar et al., 2018) 96.37 98.82 98.17 99.48 97.95 98.90 93.30 96.87 85.30 90.61
Xception (Chollet, 2017) 98.31 98.98 97.10 98.04 97.75 99.15 96.45 97.49 99.96 100.00
Ours-SFFB 99.13 99.93 99.20 99.75 99.16 99.77 99.09 99.93 99.98 100.00
where 𝜆1, 𝜆2 and 𝜆3 act as hyperparameters, controlling the trade-off
etween different loss functions.

. Experiments

In this section, we first present the overall experimental setup,
nd then present extensive experimental results and visualization to
emonstrate the effectiveness of our method.

.1. Experimental setup

Dataset. We adopt two widely-used public datasets in our ex-
eriments, FaceForensics++ (FF++) (Rossler et al., 2019) and Celeb-
eepfake (Celeb-DF) (Li et al., 2020). FaceForensics++ is a large-

cale dataset containing over 100,000 synthesized videos, consists of
our types of face manipulations: Deepfake (DF), Face2Face (F2F),
aceSwap (FS) and NeuralTexture (NT). The videos in FF++ dataset
re compressed into two versions: light compression (c23) and heavy
ompression (c40), obtained by the H.264 codec with a constant rate
uantization parameter of 23, and 40, respectively. Celeb-DF consists
f 408 original videos downloaded from YouTube and 795 fake videos.
or FF++ dataset, we randomly selected 720 videos for training, 140
ideos for validation and 140 videos for test. We divide Celeb-DF
ataset into training set, validation set and test set in the ratio of
∶ 1 ∶ 1.
Evaluation metrics. We apply Accuracy score (ACC) and Area

nder the Receiver Operating Characteristic Curve (AUC) as our eval-
ation metrics.
Implementation detail. First, we pretrain the teacher model, that

s, training a single-branch SFFB on raw images. Then, we train the
tudent model where the teacher model takes raw images as input, and
he student model takes compressed images as input. In addition, to
nsure the guidance of the teacher model on the student model, the
nput raw images and compressed images are paired. It is worth noting
hat the weights of the teacher model remain unchanged throughout
he entire training process, while the student model has no initial
eights.

We implemented the proposed method with PyTorch. We sample 50
rames per video and resize the frames to 256 × 256. Xception (Chollet,
017) pretrained on ImageNet is employed as the SFFB backbone. To
e precise, the entry flow and middle flow of Xception are used for
5

eature extraction, and the exit flow is applied after feature fusion for
classification. We employ Adam optimizer with the learning rate of
2 × 10−4, and the batch size of 32. The hyper-parameters in 𝐿𝑡𝑜𝑡𝑎𝑙 are
𝜆1 = 2, 𝜆2 = 100, 𝜆3 = 1. Temperature parameter 𝑇 is set to 1.

4.2. Experimental results

We firstly test our model on different qualities of FF++ dataset.
Specifically, we pretrain the teacher model using raw images, and
train our student model respectively in each compression level (c23
and c40). We compare our method with other Deepfake detection
methods, including ADD which also employs knowledge distillation.
The results are presented in Table 1. Fridrich and Kodovsky (2012)
and Cozzolino et al. (2018) are traditional deepfake detection methods,
and their drawback is that the testing performance of the model is
easily influenced by the quality of the images. Models such as Xception,
ResNet50 and EfficientNetV2 often serve as CNN baselines and does
not incorporate any augmentation or frequency information. Its perfor-
mance drops dramatically when testing with compressed images. We
can see from the Table 1 that, in most cases, our method outperforms
others in ACC. Our model achieved an average ACC of 98.22% and
91.30% on FF++ c23 and c40 version respectively. Especially in the
c23 version, compared to the baseline method ADD, the average ACC is
improved by 2.77%, which means our method achieves state-of-the-art
results. This demonstrates the feasibility of multi-knowledge distillation
and spatial-frequency fusion.

NeuralTexture is a powerful deepfake generation technology that
can extract textures from one image and apply them to another image
using neural networks. This process guarantees the high resolution and
highly detailed texture of output fake images. Because the original
colors and details are retained, detecting fake images generated by
NeuralTexture efficiently remains a significant challenge. But in our
work, even on the most challenging NT c40 version, we achieve a
98.36% ACC score, nearly 30% ACC improvement compared to ADD.
We can observe from Table 1 that even using SFFB alone can achieve
98.13% accuracy on NT c40 version, which proves that the features
extracted by our Spatial-Frequency Fusion Branch are comprehensive
and efficient.

To demonstrate the flexibility of our method, we test SFFB on
the c0 version of FF++ dataset and Celeb-DF dataset. As shown in
Table 2, we can observe that our SFFB can still achieve competitive
results even without KD, and achieve the state-of-the-art with near-

perfect performance on FF++ dataset(raw) and Celeb-DF dataset. And
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Fig. 4. Visualizations of our model.
Table 3
The performance of different fusion modules on the F2F c40 version.

Fusion module ACC

Summation 83.00
Concatenation 81.65
Chunked attention 71.74
Ours 83.45

Table 4
The performance of different knowledge types on the F2F c40 version.

Knowledge types ACC

Summation of 𝑀𝑠∕𝑡
𝑠 and 𝑀𝑠∕𝑡

𝑓 83.79

Fusion of 𝑀𝑠∕𝑡
𝑠 and 𝑀𝑠∕𝑡

𝑓 84.14

𝑀𝑠∕𝑡
𝑠 and 𝑀𝑠∕𝑡

𝑓 83.38

𝑀𝑠∕𝑡
𝑠 , 𝑀𝑠∕𝑡

𝑓 and logits 85.63

it is worth mentioning that our method achieves 100% AUC on Celeb
dataset. Seeing the results from Tables 1 and 2, our SFFB achieves
average ACC of 99.15%, 96.19%, and 88.30% on the compression levels
c0, c23, and c40 of FF++ dataset respectively. Although the results are
worse than SFFB&KD, they are still competitive compared with other
works.

Although we have achieved remarkable results on compressed im-
ages, there exist limitations of our model. In spite of the great perfor-
mance on the challenging NT c40 dataset, the test results of our model
on the DF and FS datasets are lower than those of the baseline model
ADD. Our results on the F2F dataset are better than ADD but lower than
the backbone network Xception. The probable cause is overfitting.

4.3. Ablation study

To demonstrate the effects of each module in our work, we perform
ablation study on FF++ dataset.

Effect of knowledge distillation. Although SFFB can achieve com-
petitive results when used alone, there is still room for improvement in
performance. As shown in Table 1, After applying knowledge distilla-
tion, the model achieved a maximum improvement of 6.49% in ACC.
The improvement in model performance after applying knowledge
distillation is due to the fact that the distilled information provides
additional guidance to the student model during training, allowing it
to learn more effectively and generalize better to compressed data.

Effect of fusion module. We conduct this experiment using SFFB
independently to evaluate the effectiveness of different fusion module
structures. As shown in Table 3, summation means we adopt element-
wise summation directly to the 𝑀𝑠∕𝑡

𝑠 and 𝑀𝑠∕𝑡
𝑓 , and concatenation

means we concatenate the feature maps of the two domains along
6

Table 5
The performance of different backbones (ACC).

Methods DF FS F2F NT

c23 c40 c23 c40 c23 c40 c23 c40

ResNet50 95.51 86.01 97.48 79.96 97.29 76.27 94.54 93.30
Ours-ResNet50 96.82 88.74 98.06 86.28 98.34 83.30 95.21 95.72

ResNet34 96.04 86.41 97.24 79.97 97.15 79.70 92.68 95.35
Ours-ResNet34 96.39 86.43 97.56 84.35 97.36 81.54 93.36 95.17

the channel dimension and use a 1 × 1 convolution to do the dimen-
sionality reduction. Chunked attention contains three steps: (1) divide
the frequency domain and spatial domain feature maps into an equal
number of blocks, (2) traverse each block, and fuse its corresponding
frequency domain and spatial domain blocks following the procedure
shown in Fig. 3 to obtain a fused block, and (3) concatenate all the
fused blocks according to their positions in the original feature map to
obtain the fused feature map. We can observe that our approach has
the best performance due to the incorporation of attention guidance
in our fusion module, which enables the student model to effectively
learn the useful information from the teacher model. The reason why
chunked attention does not work well may be the global information
loss caused by chunk.

Effect of multi-knowledge. In order to explore the influence of
different knowledge types during knowledge distillation, we conduct
experiments on F2F dataset of c40 version. As shown in Table 4,
the best performance is achieved when all 𝑀𝑠∕𝑡

𝑠 , 𝑀𝑠∕𝑡
𝑓 and logits are

transferred simultaneously because the student model can learn from
the teacher model more comprehensively.

Effect of different backbones. To further demonstrate the effec-
tiveness of our method, we conducted experiments using different
backbones and the results are shown in Table 5. During the experi-
ments, we ensure the consistency of transferred feature sizes among
different backbone networks. Table 5 shows that in most cases, our
method improved the accuracy compared to the corresponding baseline
with SFFB.

Visualizations. We adopt grad-cam to visualize the features of the
samples from the FF++ dataset. As shown in Fig. 4, we can observe
that when the image is raw, SFFB can focus on the tampered facial
area, which is the reason why the SFFB branch can achieve great
testing performance on raw images. However, when the image quality
drops to heavy compression (c40), the attention of SFFB is dispersed
to areas such as hair and background or overly focused on a small
region, resulting in a significant degradation in performance. When
we use SFFB and multi-knowledge distillation simultaneously, guided
by the teacher model, the network’s attention is restored to the tam-
pered facial area, and the problem of small attention regions has also
been alleviated, which ensures the generalization ability of the model.
However, we must admit that our method’s attention region is still not
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precise enough in some cases, and a small portion of the network’s
attention is still scattered in the background area (see the second row
in Fig. 4).

5. Conclusion

In this paper, we propose a spatial-frequency fusion based on knowl-
edge distillation for Deepfake detection. Comprehensive extraction of
spatial-frequency features ensures great generalization performance of
the model on compressed images. In addition, the incorporation of
knowledge distillation increases the student model’s attention to weak-
ened spatial-frequency features. The experimental results demonstrate
the great performance on compressed data. But our model still has
some limitations, for example, there is room for improvement in the
experimental results on heavy compressed data. In the future, we will
explore the more effective utilization of knowledge distillation in the
field of Deepfake detection.
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